Drosophila melanogaster research: history, breakthrough and perspectives

Open access


The common fruit fly, or Drosophila Melanogaster, has been used as an object of biomedicals studies for over a century. It has been mostly employed in genetic research, as it exhibits several advantages which make its use relatively easy and cheap, with the results widely translatable into further vertebrate studies. This model been the basis of the work of Christiane Nusslein-Volhard, who together with Eric Wieschaus unravelled much of the mystery surrounding early drosophila development in the 1970s-1980s, laying foundations for broader understanding of multicellular organism embryogenesis, which brought them a Nobel prize in Physiology and Medicine in 1995. The knowledge gained from drosophila studies improves the basic understanding of developmental processes, while the model itself is relatively easy to maintain, analyse and translate the results onto other species. While models such as Zebrafish present better with other vertebrates, drosophila remains a very important element of genetic research, finding even more applications with the development of current science and medicine. Hence, in this short review, the outline of the history, breakthroughs and perspectives of the drosophila research has been presented.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Jennings BH. Drosophila-a versatile model in biology & medicine. Mater Today. 2011;14:190–5; DOI:10.1016/S1369-7021(11)70113-4.

  • 2. Nagel J. Getting started. Lect. Notes Energy. Humana Press. 2008;69:231–56; DOI:10.1007/978-3-319-96355-6_5.

  • 3. Arbeitman MN Furlong EEM Imam F Johnson E Null BH Baker BS Krasnow MA Scott MP Davis RW White KP. Gene expression during the life cycle of Drosophila melanogaster. Science (80- ). 2002;297:2270–5; DOI:10.1126/science.1072152.

  • 4. Bull AL. Bicaudal a genetic factor which affects the polarity of the embryo inDrosophila melanogaster. J Exp Zool. 1966;161:221–41; DOI:10.1002/jez.1401610207.

  • 5. Schüpbach T Wieschaus E. Maternal-effect mutations altering the anterior-posterior pattern of the Drosophila embryo. Roux's Arch Dev Biol. 1986;195:302–17; DOI:10.1007/BF00376063.

  • 6. Arthur LL Chung JJ Janakirama P Keefer KM Kolotilin I Pavlovic-Djuranovic S Chalker DL Grbic V Green R Menassa R True HL Skeath JB Djuranovic S. Corrigendum: Rapid generation of hypomorphic mutations. Nat Commun. 2017;8:14705; DOI:10.1038/ncomms14705.

  • 7. Nüsslein-Volhard C. Genetic analysis of pattern-formation in the embryo of Drosophila melanogaster - Characterization of the maternal-effect mutant Bicaudal. Wilhelm Roux's Arch Dev Biol. 1977;183:249–68; DOI:10.1007/BF00867325.

  • 8. Sega GA. A review of the genetic effects of ethyl methanesulfonate. Mutat Res Genet Toxicol. 1984;134:113–42; DOI:10.1016/0165-1110(84)90007-1.

  • 9. Hoy MA. Genetic Systems Genome Evolution and Genetic Control of Embryonic Development in Insects. Insect Mol. Genet. Academic Press. 2013;103–79; DOI:10.1016/B978-0-12-415874-0.00004-4.

  • 10. Nüsslein-Volhard C Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980;287:795–801; DOI:10.1038/287795a0.

  • 11. Ingham P Gergen P. Interactions between the pair-rule genes runt hairy even-skipped and fushi tarazu and the establishment of periodic pattern in the Drosophila embryo. Development. 1988;104.

  • 12. Martinez-Arias A Lawrence PA. Parasegments and compartments in the Drosophila embryo. Nature. 1985;313:639–42; DOI:10.1038/313639a0.

  • 13. Martinez Arias A Baker NE Ingham PW. Role of segment polarity genes in the definition and maintenance of cell states in the Drosophila embryo. Development. 1988;103.

  • 14. Driever W Nüsslein-Volhard C. A gradient of bicoid protein in Drosophila embryos. Cell. 1988;54:83–93.

  • 15. Driever W Nüsslein-Volhard C. The bicoid protein determines position in the Drosophila embryo in a concentration-dependent manner. Cell. 1988;54:95–104.

  • 16. Nüsslein-Volhard C Dham R. Zebrafish: A practical approach. New York Oxford Univ Press. 2002; DOI:10.1017/S0016672303216384.

  • 17. Mullins MC Hammerschmidt M Haffter P Nüsslein-Volhard C. Large-scale mutagenesis in the zebrafish: in search of genes controlling development in a vertebrate. Curr Biol. 1994;4:189–202.

  • 18. Bergantiños C Vilana X Corominas M Serras F. Imaginal discs: Renaissance of a model for regenerative biology. BioEssays. 2010;32:207–17; DOI:10.1002/bies.200900105.

  • 19. Bell AJ McBride SMJ Dockendorff TC. Flies as the ointment: Drosophila modeling to enhance drug discovery. Fly (Austin). 2009;3:39–49; DOI:10.4161/fly.3.1.7774.

  • 20. Giacomotto J Ségalat L. High-throughput screening and small animal models where are we? Br J Pharmacol. 2010;160:204–16; DOI:10.1111/j.1476-5381.2010.00725.x.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 152 152 10
PDF Downloads 100 100 4