Dysfunction of mitochondria as the basis of Parkinson’s disease

Open access

Abstract

Parkinson's disease is the second most common neurodegenerative disease, affecting about 0,15-0,3% of the world's population. Its characteristic feature is a loss of dopaminergic neurons in the substantia nigra. PD leads to dopamine deficiency and formation of intracellular inclusions called Lewy bodies, whose main ingredient is α-synuclein. Other types of nervous system cells are also affected by changes associated with that disease. The underlying molecular pathogenesis involves multiple pathways and mechanisms: mitochondrial function, oxidative stress, genetic factors, α-synuclein proteostasis, mitochondrial dynamic impairment, and disorders of the mitophagy process. This review summarizes the factors affecting the functioning of the mitochondria and their connection to the development of Parkinson's disease.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Mhyre T Boyd J Hamill R Maguire-Zeiss K. Parkinson’s disease. Subcell Biochem. 2012;65:389-455; DOI:10.1007/978-94-007-5416-4_16.

  • 2. Kozubski W. Neurologia. Kompendium. PZWL; 2014

  • 3. Kalia L Lang A. Parkinson’s disease. Lancet. 2015;386(9996):896-912; DOI: 10.1016/S0140-6736(14)61393-3.

  • 4. Thenganatt M Jankovic J. Parkinson Disease Subtypes. JAMA Neurol. 2014;71(4):499-504; DOI:10.1001/jamaneurol.2013.6233.

  • 5. Jellinger K. Neuropathology of Sporadic Parkinson’s Disease: Evaluation and Changes of Concepts. Mov Disord. 2012;27(1):8-30; DOI:10.1002/mds.23795.

  • 6. Driver J Logroscino G Gaziano J Kurth T. Incidence and remaining lifetime risk of Parkinson disease in advanced age. Neurology. 2009;72(5):432-8; DOI:10.1212/01.wnl.0000341769.50075.bb.

  • 7. Bentea E Verbruggen L Massie A. The Proteasome Inhibition Model of Parkinson’s Disease. J Parkinsons Dis. 2017;7(1):31-63; DOI:10.3233/JPD-160921.

  • 8. Surmeier D. Determinants of dopaminergic neuron loss in Parkinson’s disease. FEBS J. 2018;285(19):3657-3668; DOI:10.1111/febs.14607.

  • 9. Chung K Dawson V Dawson T. New insights into Parkinson’s disease. J Neurol. 2003;250 Suppl 3:III15-24; DOI:10.1007/s00415-003-1304-9.

  • 10. Schapira A. Mitochondrial dysfunction in Parkinson’s disease. Cell Death Differ. 2007;14(7):1261-6; DOI:10.1038/sj.cdd.4402160.

  • 11. Bolam J Pissadaki E. Living on the edge with oo many mouths to feed: why dopamineneurons die. Mov Disord. 2012;27(12):1478-83; DOI:10.1002/mds.25135.

  • 12. Smidt M Asbreuk C Cox J Chen H Johnson R Burbach J. A second independent pathway for development of mesencephalic dopaminergic neurons requires Lmx1b. Nat Neurosci. 2000;3(4):337-41; DOI:10.1038/73902.

  • 13. Surmeier D Guzman J Sanchez-Padilla J Schumacker P. The role of calcium and mitochondrial oxidant stress in the lossof substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience. 2011;198:221-31; DOI:10.1016/j.neuroscience.2011.08.045.

  • 14. Surmeier D Schumacker P Guzman J Ilijic E Yang B Zampese E. Calcium and Parkinson’s disease. Biochem Biophys Res Commun. 2017;483(4):1013-1019; DOI:10.1016/j.bbrc.2016.08.168.

  • 15. Exner N Lutz A Haass C Winklhofer K. Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J. 2012;31(14):3038-62; DOI:10.1038emboj.2012.170.

  • 16. Pickles S Vigié P Youle R. Mitophagy and Quality Control Mechanisms in Mitochondrial Maintenance. Curr Biol. 2018;28(4):R170-R185; DOI:10.1016/j.cub.2018.01.004.

  • 17. Yao Z Wood N. Cell Death Pathways in Parkinson’s Disease: Role of Mitochondria. Antioxid Redox Signal. 2009;11(9):2135-49; DOI: 10.1089/ARS.2009.2624.

  • 18. Franco-Iborra S Vila M Perier C. The Parkinson Disease Mitochondrial Hypothesis: Where Are We at? Neuroscientist. 2016;22(3):266-77; DOI:10.1177/1073858415574600.

  • 19. Hagberg H Mallard C Rousset C Thornton C. Mitochondria: hub of injury responses in the developing brain. Lancet Neurol. 2014;13(2):217-32; DOI:10.1016/S1474-4422(13)70261-8.

  • 20. Luo Y Hoffer A Hoffer B Qi X. Mitochondria: A Therapeutic Target for Parkinson’s Disease? Int J Mol Sci. 2015;16(9):20704-30; DOI:10.3390/ijms160920704.

  • 21. Bir A Sen O Anand S Khemka VK Banerjee P Cappai R Sahoo A Chakrabarti S. α-synuclein-induced mitochondrial dysfunction in isolated preparation and intact cells: implications in the pathogenesis of Parkinson’s disease. J Neurochem. 2014;131(6):868-77; DOI:10.1111/jnc.12966.

  • 22. Ebrahimi-Fakhari D Wahlster L McLean PJ. Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 2012;124(2):153-72; DOI:10.1007/s00401-012-1004-6.

  • 23. Subramaniam S Chesselet M. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Prog Neurobiol. 2013;106-107:17-32; DOI:10.1016/j.pneurobio.2013.04.004.

  • 24. Hauser D Hastings T. Mitochondrial dysfunction and oxidative stress in Parkinson’s disease and monogenic parkinsonism. Neurobiol Dis. 2013;51:35-42; DOI: 10.1016/j.nbd.2012.10.011.

  • 25. Dehay B Bové J Rodríguez-Muela N Perier C Recasens A Boya P Vila M. Pathogenic lysosomal depletion in Parkinson’s disease. J Neurosci. 2010;30(37):12535-44; DOI:10.1523/JNEUROSCI.1920-10.2010.

  • 26. Dauer W Przedborski S. Parkinson’s Disease: Mechanisms and Models. Neuron. 2003;39(6):889-909; DOI:10.1016/s0896-6273(03)00568-3.

  • 27. Henchcliffe C Beal M. Mitochondrial biology and oxidative stress in Parkinson diseasepathogenesis. Nat Clin Pract Neurol. 2008;4(11):600-9; DOI:10.1038/ncpneuro0924.

  • 28. Dias V Junn E Mouradian M. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis. 2013;3(4):461-91; DOI:10.3233JPD-130230.

  • 29. Hwang O. Role of oxidative stress in Parkinson’s disease. Exp Neurobiol. 2013;22(1):11-7; DOI:10.5607/en.2013.22.1.11.

  • 30. Chaturvedi R Beal M. Mitochondrial approaches for neuroprotection. Ann N Y Acad Sci. 2008;1147:395-412; DOI:10.1196/annals.1427.027.

  • 31. Lin M Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature. 2006 Oct 19;443(7113):787-95; DOI:10.1038/nature05292.

  • 32. Peelaerts W Bousset L Van der Perren A Moskalyuk A Pulizzi R Giugliano M Van den Haute C Melki R Baekelandt V. α-Synuclein strains cause distinct synucleinopathies after localand systemic administration. Nature. 2015;522(7556):340-4; DOI:10.1038/nature14547.

  • 33. Sherer T Richardson J Testa C Seo B Panov A Yagi T Matsuno-Yagi A Miller G Greenamyre J. Mechanism of oxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem. 2007;100(6):1469-79; DOI:10.1111/j.1471-4159.2006.04333.x.

  • 34. Burbach J Smits S Smidt M. Transcription factors in the development of midbrain dopamine neurons. Ann N Y Acad Sci. 2003;991:61-8; DOI:10.1111/j.1749-6632.2003.tb07463.x.

  • 35. Wallén A Perlmann T. Transcriptional control of dopamine neuron development. Ann N Y Acad Sci. 2003;991:48-60; DOI:10.1111/j.1749-6632.2003.tb07462.x.

  • 36. Park J Lim C Seo H Park C Zhuo M Kaang B Lee K. Pain perception in acute model mice of Parkinson’s disease induced by 1-methyl-4-phenyl-1236-tetrahydropyridine (MPTP). Mol Pain. 2015;11:28; DOI:10.1186/s12990-015-0026-1.

  • 37. Dreyer S Zhou G Baldini A Winterpacht A Zabel B Cole W Johnson R Lee B. Mutations in LMX1B cause abnormal skeletal patterning and renal dysplasia in nail patella syndrome. Nat Genet. 1998;19(1):47-50; DOI:10.1038/ng0598-47.

  • 38. Lohr K Masoud S Salahpour A Miller G. Membrane transporters as mediators of synaptic dopamine dynamics: implications for disease. Eur J Neurosci. 2017; 45(1):20-33; DOI:10.1111/ejn.13357.

  • 39. Betarbet R Sherer T MacKenzie G Garcia-Osuna M Panov A Greenamyre J. Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci. 2000;3(12):1301-6; DOI:10.1038/81834.

  • 40. Marey-Semper I Gelman M Levi-Strauss M. The high sensitivity to rotenone of striatal dopamine uptake suggests the existence of a constitutive metabolic deficiency in dopaminergic neurons from the substantia nigra. Eur. J. Neurosci. 1993; 5 1029–1034; DOI:10.1111/j.1460-9568.1993.tb00955.x.

  • 41. Smeyne R Jackson-Lewis V. The MPTP model of Parkinson’s disease. Brain Res. Mol. Brain Res. 2005; 134 57–66; DOI: 10.1016/j.molbrainres.2004.09.017.

  • 42. Testa C Sherer T Greenamyre J. Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures. Brain Res Mol Brain Res. 2005;134(1):109-18; DOI:10.1016/j.molbrainres.2004.11.007.

  • 43. Jenner P Olanow C. Understanding cell death in Parkinson’s disease. Ann Neurol. 1998;44(3 Suppl 1):S72-84; DOI:10.1002/ana.410440712.

  • 44. Nunes I Tovmasian L Silva R Burke R Goff S. Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci U S A. 2003;100(7):4245-50; DOI:10.1073/pnas.0230529100.

  • 45. Lotharius J Brundin P. Pathogenesis of Parkinson’s disease: dopamine vesicles and alpha-synuclein. Nat Rev Neurosci. 2002;3(12):932-42; DOI:10.1038/nrn983.

  • 46. Mosharov E Larsen K Kanter E Phillips K Wilson K Schmitz Y Krantz D Kobayashi K Edwards R Sulzer D. Interplay between cytosolic dopamine calcium and alpha-synuclein causes selective death of substantia nigra neurons. Neuron. 2009;62(2):218-29; DOI:10.1016/j.neuron.2009.01.033.

  • 47. Chinta S Mallajosyula J Rane A Andersen J. Mitochondrial α-synuclein accumulation impairs complex Ifunction in dopaminergic neurons and results in increasedmitophagy in vivo. Neurosci Lett. 2010;486(3):235-9; DOI:10.1016/j.neulet.2010.09.061.

  • 48. Devi L Raghavendran V Prabhu B Avadhani N Anandatheerthavarada H. Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem. 2008;283(14):9089-100; DOI:10.1074/jbc.M710012200.

  • 49. Zuo L Motherwell M. The impact of reactive oxygen species and genetic mitochondrial mutations in Parkinson’s disease. Gene. 2013;532(1):18-23; DOI:10.1016/j.gene.2013.07.085

  • 50. Gu Z Nakamura T Lipton SA. Redox reactions induced by nitrosative stress mediate protein misfolding and mitochondrial dysfunction in neurodegenerative diseases. Mol Neurobiol. 2010;41(2-3):55-72; DOI:10.1007/s12035-010-8113-9.

  • 51. Nakamura T Prikhodko O Pirie E Nagar S Akhtar M Oh C McKercher S Ambasudhan R Okamoto S Lipton SA. Aberrant protein S-nitrosylation contributes to the pathophysiology of neurodegenerative diseases. Neurobiol Dis. 2015;84:99-108; DOI:10.1016/j.nbd.2015.03.017.

  • 52. Van Muiswinkel F Steinbusch H Drukarch B De Vente J. Identification of NO-producing and -receptive cells in mesencephalic transplants in a rat model of Parkinson’s disease: A study using NADPH-d enzyme- and NOSc/cGMP immunocytochemistry. Ann N Y Acad Sci. 1994;738:289-304; DOI:10.1111/j.1749-6632.1994.tb21815.x.

  • 53. De Lau L Breteler M. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525-35; DOI:10.1016/S1474-4422(06)70471-9.

  • 54. Klein C Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888; DOI:10.1101/cshperspect.a008888.

  • 55. Kieburtz K Wunderle K. Parkinson’s disease: evidence for environmental risk factors. Mov Disord. 2013;28(1):8-13; DOI:10.1002/mds.25150.

  • 56. Li J Tan L Yu J. The role of the LRRK2 gene in Parkinsonism. Mol Neurodegener. 2014;9:47; DOI:10.1186/1750-1326-9-47.

  • 57. Bose A Beal M. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem. 2016;139 Suppl 1:216-231; DOI:10.1111/jnc.13731.

  • 58. Cookson M. The role of leucine-rich repeat kinase 2 (LRRK2) in Parkinson’s disease. Nat Rev Neurosci. 2010;11(12):791-7; DOI:10.1038/nrn2935.

  • 59. West A Moore D Biskup S Bugayenko A Smith W Ross C Dawson V Dawson T. Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A. 2005;102(46):16842-7; DOI: 10.1073/pnas.0507360102.

  • 60. Chasapis C Spyroulias G. RING finger E(3) ubiquitin ligases: structure and drug discovery. Curr Pharm Des. 2009;15(31):3716-31; DOI:10.2174/138161209789271825.

  • 61. Lee J Nagano Y Taylor J Lim K Yao T. Disease-causing mutations in parkin impair mitochondrial ubiquitination aggregation and HDAC6-dependent mitophagy. J Cell Biol. 2010;189(4):671-9; DOI:10.1083/jcb.201001039.

  • 62. Morrison K. Parkin mutations and early onset parkinsonism. Brain. 2003;126(Pt 6):1250-1; DOI: 10.1093/brain/awg189.

  • 63. Riess O Jakes R Krüger R. Genetic dissection of familial Parkinson’s disease. Mol Med Today. 1998;4(10):438-44; DOI:10.1016/s1357-4310(98)01343-4.

  • 64. Tan J Dawson T. Parkin blushed by PINK1. Neuron. 2006;50(4):527-9; DOI:10.1016/j.neuron.2006.05.003.

  • 65. Kazlauskaite A Muqit M. PINK1 and Parkin—mitochondrial interplay between phosphorylation and ubiquitylation in Parkinson’s disease. FEBS J. 2015;282(2):215-23; DOI:10.1111/febs.13127.

  • 66. Song S Jang S Park J Bang S Choi S Kwon K Zhuang X Kim E Chung J. Characterization of PINK1 (PTEN-induced putative kinase 1) mutations associated with Parkinson disease in mammalian cells and drosophila. J Biol Chem. 2013;288(8):5660-72 DOI:10.1074/jbc.M112.430801.

  • 67. Pickrell A Youle R. The roles of PINK1 parkin and mitochondrial fidelity in Parkinson’s disease. Neuron. 2015;85(2):257-73; DOI:10.1016/j.neuron.2014.12.007.

  • 68. Bonifati V Oostra B Heutink P. Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson’s disease. J Mol Med (Berl). 2004;82(3):163-74; DOI: 10.1007/s00109-003-0512-1.

  • 69. Wang X Yan M Fujioka H Liu J Wilson-Delfosse A Chen S Perry G Casadesus G Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21(9):1931-44; DOI:10.1093/hmg/dds003.

  • 70. Bender A Desplats P Spencer B Rockenstein E Adame A Elstner M Laub C Mueller S Koob A Mante M Pham E Klopstock T Masliah E. TOM40 mediates mitochondrial dysfunction induced by alpha-synuclein accumulation in Parkinson’s disease. PLoS One. 2013;8(4):e62277; DOI:10.1371/journal.pone.0062277.

  • 71. Oczkowska A Kozubski W Dorszewska J. Alpha-synuclein in Parkinson’s disease. Przegl Lek. 2014;71(1):26-32.

  • 72. Wales P Pinho R Lázaro D Outeiro T. Limelight on alpha-synuclein: pathological and mechanistic implications in neurodegeneration. J Parkinsons Dis. 2013;3(4):415-59; DOI:10.3233/JPD-130216.

  • 73. Stefanis L. α-Synuclein in Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(2):a009399; DOI:10.1101/cshperspect.a009399.

  • 74. Emmanouilidou E Stefanis L Vekrellis K. Cell produced alpha-synuclein oligomers are targeted to and impair the 26S proteasome. Neurobiol Aging. 2010;31(6):953-68; DOI:10.1016/j.neurobiolaging.2008.07.008.

  • 75. Xilouri M Brekk O Stefanis L. α-Synuclein and protein degradation systems: a reciprocal relationship. Mol Neurobiol. 2013;47(2):537-51; DOI: 10.1007/s12035-012-8341-2.

  • 76. Brundin P Li J Holton J Lindvall O Revesz T. Research in motion: the enigma of Parkinson’s disease pathology spread. Nat Rev Neurosci. 2008;9(10):741-5; DOI:10.1038/nrn2477.

  • 77. Martin L Pan Y Price A Sterling W Copeland N Jenkins N Price D Lee M. Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci. 2006;26(1):41-50; DOI:10.1523/JNEUROSCI.4308-05.2006.

  • 78. Kim C Lee S. Controlling the mass action of alpha-synuclein in Parkinson’s disease. J Neurochem. 2008;107(2):303-16; DOI:10.1111/j.1471-4159.2008.05612.x.

  • 79. Peelaerts W Bousset L Van der Perren A Moskalyuk A Pulizzi R Giugliano M Van den Haute C Melki R Baekelandt V. α-Synuclein strains cause distinct synucleinopathies after localand systemic administration. Nature. 2015;522(7556):340-4; DOI:10.1038/nature14547.

  • 80. Simon H Saueressig H Wurst W Goulding M O’Leary D. Fate of midbrain dopaminergic neurons controlled by the engrailed genes. J Neurosci. 2001;21(9):3126-34; DOI:10.1523/jneurosci.21-09-03126.2001.

  • 81. Tanner C Goldman S. Epidemiology of Parkinson’s disease. Neurol Clin. 1996;14(2):317-35; DOI:10.1016/s0733-8619(05)70259-0.

  • 82. Krüger R Kuhn W Müller T Woitalla D Graeber M Kösel S Przuntek H Epplen J Schöls L Riess O. Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet. 1998;18(2):106-8; DOI:10.1038/ng0298-106.

  • 83. Jin H Li C. Tanshinone IIA and Cryptotanshinone Prevent Mitochondrial Dysfunction in Hypoxia-Induced H9c2 Cells: Association to Mitochondrial ROS Intracellular Nitric Oxide and Calcium Levels. Evid Based Complement Alternat Med. 2013;2013:610694; DOI:10.1155/2013/610694.

  • 84. Morgante L Rocca W Di Rosa A De Domenico P Grigoletto F Meneghini F Reggio A Savettieri G Castiglione M Patti F. Prevalence of Parkinson’s disease and other types of parkinsonism: A door-to-door survey in three Sicilian municipalities. The Sicilian Neuro-Epidemiologic Study (SNES) Group. Neurology. 1992;42(10):1901-7; DOI:10.1038/ng0298-106.

  • 85. Berthet A Margolis E Zhang J Hsieh I Zhang J Hnasko T Ahmad J Edwards R Sesaki H Huang E Nakamura K. Loss of mitochondrial fission depletes axonal mitochondria in midbrain dopamine neurons. J Neurosci. 2014;34(43):14304-17; DOI:10.1523/JNEUROSCI.0930-14.2014.

  • 86. Mantegazza A Marks M.Pink light on mitochondria in autoimmunity and Parkinson Disease. Cell Metab. 2016; 24(1): 11–12; DOI:10.1016/j.cmet.2016.06.022.

  • 87. Zetterström R Solomin L Jansson L Hoffer B Olson L Perlmann T. Dopamine neuron agenesis in Nurr1-deficient mice. Science. 1997;276(5310):248-50; DOI:10.1126/science.276.5310.248.

  • 88. Bonifati V Rizzu P Squitieri F Krieger E Vanacore N Van Swieten J Brice A Van Duijn C Oostra B Meco G Heutink P. DJ-1(PARK7) a novel gene for autosomal recessive early onset parkinsonism. Neurol Sci. 2003;24(3):159-60; DOI: 10.1007/s10072-003-0108-0.

  • 89. Wang X Yan M Fujioka H Liu J Wilson-Delfosse A Chen S Perry G Casadesus G Zhu X. LRRK2 regulates mitochondrial dynamics and function through direct interaction with DLP1. Hum Mol Genet. 2012;21(9):1931-44; DOI:10.1093/hmg/dds003.

  • 90. Yamamoto A Yue Z. Autophagy and its normal and pathogenic states in the brain. Annu Rev Neurosci. 2014;37:55-78; DOI:10.1146/annurev-neuro-071013-014149.

  • 91. Fass E Amar N Elazar Z. Identification of essential residues for the C-terminal cleavage of the mammalian LC3: A lesson from yeast Atg8. Autophagy. 2007;3(1):48-50; DOI:10.4161/auto.3417.

  • 92. Wu F Xu H Guan J Hou Y Gu J Zhen X Qin Z. Rotenone impairs autophagic flux and lysosomal functions in Parkinson’s disease. Neuroscience. 2015;284:900-11; DOI:10.1016/j.neuroscience.2014.11.004.

  • 93. Narendra D Youle R. Targeting mitochondrial dysfunction: Role for PINK1 and Parkin in mitochondrial quality control. Antioxid Redox Signal. 2011;14(10):1929-38; DOI:10.1089/ars.2010.3799.

  • 94. Rakovic A Shurkewitsch K Seibler P Grünewald A Zanon A Hagenah J Krainc D Klein C. Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1)-dependent ubiquitination of endogenous Parkin attenuates mitophagy: Study in human primary fibroblasts and induced pluripotent stem cell-derived neurons. J Biol Chem. 2013;288(4):2223-37; DOI:10.1074/jbc.M112.391680.

  • 95. Wang X Petrie T Liu Y Liu J Fujioka H Zhu X. Parkinson’s disease-associated DJ-1 mutations impair mitochondrial dynamics and cause mitochondrial dysfunction. J Neurochem. 2012;121(5):830-9; DOI:10.1111/j.1471-4159.2012.07734.x.

  • 96. Gómez-Suaga P Luzón-Toro B Churamani D Zhang L Bloor-Young D Patel S Woodman P Churchill G Hilfiker S. Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Hum Mol Genet. 2012;21(3):511-25; DOI:10.1093/hmg/ddr481.

  • 97. Bravo-San Pedro J Niso-Santano M Gómez-Sánchez R Pizarro-Estrella E Aiastui-Pujana A Gorostidi A Climent V López de Maturana R Sanchez-Pernaute R López de Munain A Fuentes J González-Polo R. The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci. 2013;70(1):121-36; DOI:10.1007/s00018-012-1061-y.

  • 98. Gómez-Suaga P Hilfiker S. LRRK2 as a modulator of lysosomal calcium homeostasis with downstream effects on autophagy. Autophagy. 2012;8(4):692-3; DOI: 10.4161/auto.19305.

  • 99. Orenstein S Kuo S Tasset I Arias E Koga H Fernandez-Carasa I Cortes E Honig L Dauer W Consiglio A Raya A Sulzer D Cuervo A. Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci. 2013;16(4):394-406; DOI: 10.1038/nn.3350.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 247 247 6
PDF Downloads 186 186 4