Genes involved in angiogenesis and circulatory system development are differentially expressed in porcine epithelial oviductal cells during long-term primary in vitro culture – a transcriptomic study

Open access


An oviduct is an essential organ for gamete transport, oocyte maturation, fertilization, spermatozoon capacitation and early embryo development. The epithelium plays an important role in oviduct functioning. The products of secretory cells provide an optimal environment and influence gamete activities and embryonic development. The oviduct physiology changes during the female cycle, thus, the ratio of the secreted molecules in the oviduct fluid differs between phases. In this study, a differential gene expression in porcine oviduct epithelial cells was examined during the long-term primary in vitro culture. The microarray expression analysis revealed 2552 genes, 1537 of which were upregulated and 995 were downregulated after 7 days of culture, with subsequent changes in expression during 30 day-long culture. The obtained genes were classified into 8 GO BP terms, connected with angiogenesis and circulatory system development, extracted by DAVID software. Among all genes, 10 most up-regulated and 10 most down-regulated genes were selected for further investigation. Interactions between genes were indicated by STRING software and REACTOME FIViz application to the Cytoscape 3.6.0 software. Most of the genes belonged to more than one ontology group. Although studied genes are mostly responsible for angiogenesis and circulatory system development, they can also be found to be expressed in processes connected with fertilization and early embryo development. The latter function is focused on more, considering the fact that these genes were expressed in epithelial cells of the fallopian tube which is largely responsible for reproductive processes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Özen A ERTUǦRUL T. Histomorphology of the porcine oviduct. Ankara Üniversitesi Vet Fakültesi Derg. 2013;60:7–13; DOI:10.1501/Vetfak_0000002546.

  • 2. Killian G. Evidence for the role of oviduct secretions in sperm function fertilization and embryo development. Anim Reprod Sci. 2004;82–83:141–53; DOI:10.1016/j.anireprosci.2004.04.028.

  • 3. Chen S Einspanier R Schoen J. Long-term culture of primary porcine oviduct epithelial cells: Validation of a comprehensive in vitro model for reproductive science. Theriogenology. 2013;80:862–9; DOI:10.1016/j.theriogenology.2013.07.011.

  • 4. Aldarmahi A. Establishment and characterization of female reproductive tract epithelial cell culture. J Microsc Ultrastruct. 2017;5:105; DOI:10.1016/j.jmau.2016.07.004.

  • 5. Jung JG Park TS Kim JN Han BK Lee SD Song G Han JY. Characterization and Application of Oviductal Epithelial Cells In vitro in Gallus domesticus1. Biol Reprod. 2011;85:798–807; DOI:10.1095/biolreprod.111.092023.

  • 6. Slavík T Fulka J. Oviduct secretion contributes to the establishment of species specific barrier preventing penetration of oocytes with foreign spermatozoa. Folia Biol (Praha). 1999;45:53–8;

  • 7. Mugnier S Kervella M Douet C Canepa S Pascal G Deleuze S Duchamp G Monget P Goudet G. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: are osteopontin atrial natriuretic peptide A and oviductin involved? Reprod Biol Endocrinol. 2009;7:129; DOI:10.1186/1477-7827-7-129.

  • 8. Gervasi MG Marczylo TH Lam PM Rana S Franchi AM Konje JC Perez-Martinez S. Anandamide Levels Fluctuate in the Bovine Oviduct during the Oestrous Cycle. PLoS One. 2013;8:e72521; DOI:10.1371/journal.pone.0072521.

  • 9. Coy P García-Vázquez FA Visconti PE Avilés M. Roles of the oviduct in mammalian fertilization. REPRODUCTION. 2012;144:649–60; DOI:10.1530/REP-12-0279.

  • 10. Shirley B Reeder RL. Cyclic changes in the ampulla of the rat oviduct. J Exp Zool. 1996;276:164–73; DOI:10.1002/(SICI)1097-010X(19961001)276:2<164::AID-JEZ10>3.0.CO;2-K.

  • 11. Areekijseree M Vejaratpimol R. In vivo and in vitro study of porcine oviductal epithelial cells cumulus oocyte complexes and granulosa cells: A scanning electron microscopy and inverted microscopy study. Micron. 2006;37:707–16; DOI:10.1016/j.micron.2006.03.004.

  • 12. Acuña OS Avilés M López-Úbeda R Guillén-Martínez A Soriano-Úbeda C Torrecillas A Coy P Izquierdo-Rico MJ. Differential gene expression in porcine oviduct during the oestrous cycle. Reprod Fertil Dev. 2017;29:2387–99; DOI:10.1071/RD16457.

  • 13. Miessen K Sharbati S Einspanier R Schoen J. Modelling the porcine oviduct epithelium: A polarized in vitro system suitable for long-term cultivation. Theriogenology. 2011;76:900–10; DOI:10.1016/j.theriogenology.2011.04.021.

  • 14. Huang DW Sherman BT Tan Q Kir J Liu D Bryant D Guo Y Stephens R Baseler MW Lane HC Lempicki RA. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007;35:W169–75; DOI:10.1093/nar/gkm415.

  • 15. Walter W Sánchez-Cabo F Ricote M. GOplot: an R package for visually combining expression data with functional analysis: Fig. 1. Bioinformatics. 2015;31:2912–4; DOI:10.1093/bioinformatics/btv300.

  • 16. von Mering C Jensen LJ Snel B Hooper SD Krupp M Foglierini M Jouffre N Huynen MA Bork P. STRING: Known and predicted protein-protein associations integrated and transferred across organisms. Nucleic Acids Res. 2005; DOI:10.1093/nar/gki005.

  • 17. Park K Kim J Choi C-Y Bae J Kim S-H Kim Y-H Molecular Cloning and Expression Analysis of Pig Cd90. Anim Biotechnol. 2016;27:133–9; DOI :10.1080/10495398.2015.1129630.

  • 18. Morris R. Thy-1 in Developing Nervous Tissue (Part 1 of 2). Dev Neurosci. 1985;7:133–46; DOI:10.1159/000112283.

  • 19. Lee W-S Jain MK Arkonac BM Zhang D Shaw S-Y Kashiki S Maemura K Lee SL Hollenberg NK Lee M Haber E. Thy-1 a Novel Marker for Angiogenesis Upregulated by Inflammatory Cytokines. Circ Res. 1998;82:845–51; DOI:10.1161/01.RES.82.8.845.

  • 20. Meidtner K Schwarzenbacher H Scharfe M Severitt S Blöcker H Fries R. Haplotypes of the porcine peroxisome proliferator-activated receptor delta gene are associated with backfat thickness. BMC Genet. 2009;10:76; DOI:10.1186/1471-2156-10-76.

  • 21. Bader BL Rayburn H Crowley D Hynes RO. Extensive Vasculogenesis Angiogenesis and Organogenesis Precede Lethality in Mice Lacking All αv Integrins. Cell. 1998;95:507–19; DOI:10.1016/S0092-8674(00)81618-9.

  • 22. Lacy-Hulbert A Smith AM Tissire H Barry M Crowley D Bronson RT Roes JT Savill JS Hynes RO. Ulcerative colitis and autoimmunity induced by loss of myeloid v integrins. Proc Natl Acad Sci. 2007;104:15823–8; DOI:10.1073/pnas.0707421104.

  • 23. Tian H McKnight SL Russell DW. Endothelial PAS domain protein 1 (EPAS1) a transcription factor selectively expressed in endothelial cells. Genes Dev. 1997;11:72–82; DOI:10.1101/gad.11.1.72.

  • 24. Sood R Zehnder JL Druzin ML Brown PO. Gene expression patterns in human placenta. Proc Natl Acad Sci. 2006;103:5478–83; DOI:10.1073/pnas.0508035103.

  • 25. Foley AC Mercola M. Heart induction by Wnt antagonists depends on the homeodomain transcription factor Hex. Genes Dev. 2005;19:387–96; DOI:10.1101/gad.1279405.

  • 26. Paz H Lynch MR Bogue CW Gasson JC. The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. Blood. 2010;116:1254–62; DOI:10.1182/blood-2009-11-254383.

  • 27. Diaz PS Solar PA Juica NE Orihuela PA Cardenas H Christodoulides M Vargas R Velasquez LA. Differential expression of extracellular matrix components in the Fallopian tubes throughout the menstrual cycle. Reprod Biol Endocrinol. 2012;10:56; DOI:10.1186/1477-7827-10-56.

  • 28. Talbot P Shur BD Myles DG. Cell Adhesion and Fertilization: Steps in Oocyte Transport Sperm-Zona Pellucida Interactions and Sperm-Egg Fusion1. Biol Reprod. 2003;68:1–9; DOI:10.1095/biolreprod.102.007856.

  • 29. Chen D Wang X Liang D Gordon J Mittal A Manley N Degenhardt K Astrof S. Fibronectin signals through integrin α5β1 to regulate cardiovascular development in a cell type-specific manner. Dev Biol. 2015;407:195–210; DOI:10.1016/j.ydbio.2015.09.016.

  • 30. Wang J Karra R Dickson AL Poss KD. Fibronectin is deposited by injury-activated epicardial cells and is necessary for zebrafish heart regeneration. Dev Biol. 2013;382:427–35; DOI:10.1016/j.ydbio.2013.08.012.

  • 31. Lin H Wang X Liu G Fu J Wang A. Expression of αV and β3 integrin subunits during implantation in pig. Mol Reprod Dev. 2007;74:1379–85; DOI:10.1002/mrd.20732.

  • 32. Lessey BA. Adhesion molecules and implantation. J Reprod Immunol. 2002;55:101–12; DOI:10.1016/S0165-0378(01)00139-5.

  • 33. Bowen J a Bazer FW Burghardt RC. Spatial and Temporal Analyses of Integrin and Muc-1 Expression in Porcine Uterine Epithelium and Trophectoderm in vitro1. Biol Reprod. 1997;56:409–15; DOI:10.1095/biolreprod56.2.409.

  • 34. Illera MJ Cullinan E Gui Y Yuan L Beyler SA Lessey BA. Blockade of the αvβ3 Integrin Adversely Affects Implantation in the Mouse1. Biol Reprod. 2000;62:1285–90; DOI:10.1095/biolreprod62.5.1285.

  • 35. Lessey BA Castelbaum AJ Sawin SW Sun J. Integrins as markers of uterine receptivity in women with primary unexplained infertility**Supported by the National Institutes of Health grants HD-29449 and HD-30476 1 (B.A.L.) Bethesa Maryland.††Presented at the 40th Annual Meeting of the Society of G. Fertil Steril. 1995;63:535–42; DOI:10.1016/S0015-0282(16)57422-6.

  • 36. Zhang J Wang J Gao N Chen Z Tian Y An J. Up-regulated expression of β3 integrin induced by dengue virus serotype 2 infection associated with virus entry into human dermal microvascular endothelial cells. Biochem Biophys Res Commun. 2007;356:763–8; DOI:10.1016/j.bbrc.2007.03.051.

  • 37. Rajaram RD Dissard R Jaquet V de Seigneux S. Potential benefits and harms of NADPH oxidase type 4 in the kidneys and cardiovascular system. Nephrol Dial Transplant. 2018DOI:10.1093/ndt/gfy161.

  • 38. Hakami NY Ranjan AK Hardikar AA Dusting GJ Peshavariya HM. Role of NADPH Oxidase-4 in Human Endothelial Progenitor Cells. Front Physiol. 2017;8:1–10; DOI:10.3389/fphys.2017.00150.

  • 39. Ponticos M Abraham D Alexakis C Lu Q-L Black C Partridge T Bou-Gharios G. Col1a2 enhancer regulates collagen activity during development and in adult tissue repair. Matrix Biol. 2004;22:619–28; DOI:10.1016/j.matbio.2003.12.002.

  • 40. Marini JC Forlino A Cabral WA Barnes AM San Antonio JD Milgrom S Hyland JC Körkkö J Prockop DJ De Paepe A Coucke P Symoens S Glorieux FH Roughley PJ Lund AM Kuurila-Svahn K Hartikka H Cohn DH Krakow D Mottes M Schwarze U Chen D Yang K Kuslich C Troendle J Dalgleish R Byers PH. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28:209–21; DOI:10.1002/humu.20429.

  • 41. Knisely AS Richardson A Abuelo D Casey S Singer DB. Lethal osteogenesis imperfecta associated with 46XYinv(7)(p13q22) karyotype. J Med Genet. 1988;25:352–5; DOI:10.1136/jmg.25.5.352.

  • 42. Sharma-Bhandari A Park S-H Kim J-Y Oh J Kim Y. Lysyl oxidase modulates the osteoblast differentiation of primary mouse calvaria cells. Int J Mol Med. 2015;36:1664–70; DOI:10.3892/ijmm.2015.2384.

  • 43. Oxlund H Sekilde L Ørtoft G. Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone. 1996;19:479–84; DOI:10.1016/S8756-3282(96)00283-9.

  • 44. Bailey AJ Wotton SF Sims TJ Thompson PW. Biochemical changes in the collagen of human osteoporotic bone matrix. Connect Tissue Res. 1993;29:119–32; DOI:10.3109/03008209309014239.

  • 45. Talas U Dunlop J Khalaf S Leigh IM Kelsell DP. Human Elastase 1: Evidence for Expression in the Skin and the Identification of a Frequent Frameshift Polymorphism. J Invest Dermatol. 2000;114:165–70; DOI:10.1046/j.1523-1747.2000.00825.x.

  • 46. Liu S Young SM Varisco BM. Dynamic expression of chymotrypsin-like elastase 1 over the course of murine lung development. Am J Physiol Cell Mol Physiol. 2014;306:L1104–16; DOI:10.1152/ajplung.00126.2013.

  • 47. Petrovic N Schacke W Gahagan JR O’Conor CA Winnicka B Conway RE Mina-Osorio P Shapiro LH. CD13/APN regulates endothelial invasion and filopodia formation. Blood. 2007;110:142–50; DOI:10.1182/blood-2006-02-002931.

  • 48. Rangel R Sun Y Guzman-Rojas L Ozawa MG Sun J Giordano RJ Van Pelt CS Tinkey PT Behringer RR Sidman RL Arap W Pasqualini R. Impaired angiogenesis in aminopeptidase N-null mice. Proc Natl Acad Sci. 2007;104:4588–93; DOI:10.1073/pnas.0611653104.

  • 49. Angiolillo AL. Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med. 1995;182:155–62; DOI:10.1084/jem.182.1.155.

  • 50. Gouagna LC Bancone G Yao F Yameogo B Dabiré KR Costantini C Simporé J Ouedraogo JB Modiano D. Genetic variation in human HBB is associated with Plasmodium falciparum transmission. Nat Genet. 2010;42:328–31; DOI:10.1038/ng.554.

  • 51. Pérez-Mancera PA Bermejo-Rodríguez C González-Herrero I Herranz M Flores T Jiménez R Sánchez-García I. Adipose tissue mass is modulated by SLUG (SNAI2). Hum Mol Genet. 2007;16:2972–86; DOI:10.1093/hmg/ddm278.

  • 52. Nieto MA. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol. 2002;3:155–66; DOI:10.1038/nrm757.

  • 53. Narkis G Ofir R Landau D Manor E Volokita M Hershkowitz R Elbedour K Birk OS. Lethal Contractural Syndrome Type 3 (LCCS3) Is Caused by a Mutation in PIP5K1C Which Encodes PIPKIγ of the Phophatidylinsitol Pathway. Am J Hum Genet. 2007;81:530–9; DOI:10.1086/520771.

  • 54. Makinodan M Rosen KM Ito S Corfas G. A Critical Period for Social Experience-Dependent Oligodendrocyte Maturation and Myelination. Science (80- ). 2012;337:1357–60; DOI:10.1126/science.1220845.

  • 55. Boeckel J-N Derlet A Glaser SF Luczak A Lucas T Heumüller AW Krüger M Zehendner CM Kaluza D Doddaballapur A Ohtani K Treguer K Dimmeler S. JMJD8 Regulates Angiogenic Sprouting and Cellular Metabolism by Interacting With Pyruvate Kinase M2 in Endothelial Cells. Arterioscler Thromb Vasc Biol. 2016;36:1425–33; DOI:10.1161/ATVBAHA.116.307695.

  • 56. Agger K Cloos PAC Christensen J Pasini D Rose S Rappsilber J Issaeva I Canaani E Salcini AE Helin K. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature. 2007;449:731–4; DOI:10.1038/nature06145.

  • 57. Lan F Bayliss PE Rinn JL Whetstine JR Wang JK Chen S Iwase S Alpatov R Issaeva I Canaani E Roberts TM Chang HY Shi Y. A histone H3 lysine 27 demethylase regulates animal posterior development. Nature. 2007;449:689–94; DOI:10.1038/nature06192.

  • 58. Zhang P Andrianakos R Yang Y Liu C Lu W. Kruppel-like Factor 4 (Klf4) Prevents Embryonic Stem (ES) Cell Differentiation by Regulating Nanog Gene Expression. J Biol Chem. 2010;285:9180–9; DOI:10.1074/jbc.M109.077958.

  • 59. Zheng X Li A Zhao L Zhou T Shen Q Cui Q Qin X. Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochem Biophys Res Commun. 2013;437:625–31; DOI:10.1016/j.bbrc.2013.07.017.

  • 60. Tang M Wang G Lu P Karas RH Aronovitz M Heximer SP Kaltenbronn KM Blumer KJ Siderovski DP Zhu Y Mendelsohn ME. Regulator of G-protein signaling-2 mediates vascular smooth muscle relaxation and blood pressure. Nat Med. 2003;9:1506–12; DOI:10.1038/nm958.

  • 61. Heximer SP Knutsen RH Sun X Kaltenbronn KM Rhee M-H Peng N Oliveira-dos-Santos A Penninger JM Muslin AJ Steinberg TH Wyss JM Mecham RP Blumer KJ. Hypertension and prolonged vasoconstrictor signaling in RGS2-deficient mice. J Clin Invest. 2003;111:445–52; DOI:10.1172/JCI15598.

Journal information
Cited By
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 225 225 4
PDF Downloads 199 199 2