Endocrine disruptors: General characteristics, chemical nature and mechanisms of action. A review.

Open access


Over recent decades, different types of industrially manufactured chemicals have become widespread environmental contaminants with potential to interfere with the synthesis, secretion, transport, binding or elimination of natural hormones in the body. These chemical substances were named endocrine disruptors (EDs). The main route of exposure to EDs is the ingestion of contaminated food and water. EDs are very dangerous, because they have long half-life, stay present in the environment for years and may concentrate at great distances from the site where were produced. The group of EDs is heterogeneous and contains industrial lubricants, solvents, plastics, plasticizers, pesticides, fungicides, drugs, but also natural chemicals. The mechanisms of EDs action are difficult to predict, many substances act by interfering with the estrogen receptors (ER), androgen receptor (AR), thyroid receptors (TRs) and aryl hydrocarbon receptor (AhR), but they can also influence hormone synthesis or can have effect on epigenetic mechanisms. Further research is necessary to improve knowledge about EDs and their metabolites, and to identify endocrine-disruptive potential of chemicals, those replacing current EDs before they are widely distributed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Damstra T Page SW Herrman JL Meredith T. Persistent organic pollutants: potential health effects? Journal of Epidemiology & Community Health. 2002;56(11):824-5; DOI:10.1136/jech.56.11.824.

  • 2. Diamanti-Kandarakis E Bourguignon JP Giudice LC Hauser R Prins GS Soto AM Zoeller RT Gore AC. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocrine Reviews. 2009;30(4):293-342; DOI:10.1210/er.2009-0002.

  • 3. Kavlock RJ Daston GP DeRosa C FennerCrisp P Gray LE Kaattari S Lucier G Luster M Mac MJ Maczka C Miller R Moore J Rolland R Scott G Sheehan DM Sinks T Tilson HA. Research needs for the risk assessment of health and environmental effects of endocrine disruptors: A report of the US EPA-sponsored workshop. Environmental Health Perspectives. 1996;104:715-40; DOI:10.2307/3432708.

  • 4. Brevini TAL Cillo F Antonini S Gandolfi F. Effects of endocrine disrupters on the oocytes and embryos of farm animals. Reproduction in Domestic Animals. 2005;40(4):291-9; DOI:10.1111/j.1439-0531.2005.00592.x.

  • 5. Calafat AM Ye XY Wong LY Reidy JA Needham LL. Exposure of the US population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environmental Health Perspectives. 2008;116(1):39-44; DOI:10.1289/ehp.10753.

  • 6. Schiliro T Gorrasi I Longo A Coluccia S Gilli G. Endocrine disrupting activity in fruits and vegetables evaluated with the E-screen assay in relation to pesticide residues. Journal of Steroid Biochemistry and Molecular Biology. 2011;127(1-2):139-46; DOI:10.1016/j.jsbmb.2011.03.002.

  • 7. Fingler S Drevenkar V Tkalcevic B Smit Z. Levels of polychlorinated-biphenyls organochlorine pesticides and and chlrophenols in the Kupa river water and in drinking waters from different areas of Croatia. Bulletin of Environmental Contamination and Toxicology. 1992;49(6):805-12; DOI:10.1007/bf00203151.

  • 8. Abbassy MS Ibrahim HZ Abu El-Amayem MM. Occurrence of pesticides and polychlorinated biphenyls in water of the Nile river at the estuaries of Rosetta and Damiatta branches North of Delta Egypt. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes. 1999;34(2):255-67; DOI:10.1080/03601239909373196.

  • 9. Rajapakse N Silva E Kortenkamp A. Combining xenoestrogens at levels below individual No-observed-effect concentrations dramatically enhances steroid hormone action. Environmental Health Perspectives. 2002;110(9):917-21; DOI:10.1289/ehp.02110917.

  • 10. Silva E Rajapakse N Kortenkamp A. Something from nothing - Eight weak estrogenic chemicals combined at concentrations below NOECs produce significant mixture effects. Environmental Science & Technology. 2002;36(8):1751-6; DOI:10.1021/es0101227.

  • 11. Vom Saal FS Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment. Environmental Health Perspectives. 2005;113(8):926-33; DOI:10.1289/ehp.7713; DOI: 10.1289/ehp.7713.

  • 12. Vandenberg LN Chahoud I Heindel JJ Padmanabhan V Paumgartten FJR Schoenfelder G. Urinary Circulating and Tissue Biomonitoring Studies Indicate Widespread Exposure to Bisphenol A. Ciencia & Saude Coletiva. 2012;17(2):407-34; DOI:10.1590/s1413-81232012000200015.

  • 13. Welshons WV Thayer KA Judy BM Taylor JA Curran EM vomSaal FS. Large effects from small exposures. I. Mechanisms for endocrine-disrupting chemicals with estrogenic activity. Environmental Health Perspectives. 2003;111(8):994-1006; DOI:10.1289/ehp.5494.

  • 14. Vandenberg LN Colborn T Hayes TB Heindel JJ Jacobs DR Lee DH Myers JP Shioda T Soto AM vom Saal FS Welshons WV Zoeller RT. Regulatory decisions on endocrine disrupting chemicals should be based on the principles of endocrinology. Reproductive Toxicology. 2013;38:1-15; DOI:10.1016/j.reprotox.2013.02.002.

  • 15. Boerjan ML Freijnagel S Rhind SM Meijer GAL. The potential reproductive effects of exposure of domestic ruminants to endocrine disrupting compounds. Animal Science. 2002;74:3-12; WOS:000176332900002.

  • 16. De Coster S van Larebeke N. Endocrine-disrupting chemicals: associated disorders and mechanisms of action. Journal of Environmental and Public Health. 2012; 713696; DOI:10.1155/2012/713696.

  • 17. Gaido KW Maness SC McDonnell DP Dehal SS Kupfer D Safe S. Interaction of methoxychlor and related compounds with estrogen receptor alpha and beta and androgen receptor: structure-activity studies. Molecular Pharmacology. 2000;58(4):852-8; WOS:000089488700024.

  • 18. Lemaire G Mnif W Mauvais P Balaguer P Rahmani R. Activation of alpha- and beta-estrogen receptors by persistent pesticides in reporter cell lines. Life Sciences. 2006;79(12):1160-9; DOI:10.1016/j.lfs.2006.03.02.

  • 19. Mrema EJ Rubino FM Brambilla G Moretto A Tsatsakis AM Colosio C. Persistent organochlorinated pesticides and mechanisms of their toxicity. Toxicology. 2013;307:74-88; DOI:10.1016/j.tox.2012.11.015.

  • 20. Gore AC Chappell VA Fenton SE Flaws JA Nadal A Prins GS Toppari J Zoeller RT. Executive Summary to EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocrine Reviews. 2015;36(6):593-602; DOI:10.1210/er.2015-1093.

  • 21. Kelce WR Stone CR Laws SC Gray LE Kemppainen JA Wilson EM. Persistent DDT metabolite PP'-DDE is a potent androgen receptor antagonist. Nature. 1995;375(6532):581-5; DOI:10.1038/375581a0.

  • 22. Wetherill YB Fisher NL Staubach A Danielsen M White RWD Knudsen KE. Xenoestrogen action in prostate cancer: Pleiotropic effects dependent on androgen receptor status. Cancer Research. 2005;65(1):54-65; WOS:000226080200009.

  • 23. Wang H Ding Z Shi QM Ge X Wang HX Li MX Chen G Wang Q Ju Q Zhang JP Zhang MR Xu LC. Anti-androgenic mechanisms of Bisphenol A involve androgen receptor signaling pathway. Toxicology. 2017;387:10-6; DOI:10.1016/j.tox.2017.06.007.

  • 24. Hamers T Kamstra JH Cenijn PH Pencikova K Palkova L Simeckova P Vondracek J Andersson PL Stenberg M Machala M. In Vitro Toxicity Profiling of Ultrapure Non-Dioxin-like Polychlorinated Biphenyl Congeners and Their Relative Toxic Contribution to PCB Mixtures in Humans. Toxicological Sciences. 2011;121(1):88-100; DOI:10.1093/toxsci/kfr043.

  • 25. Butt CM Stapleton HM. Inhibition of Thyroid Hormone Sulfotransferase Activity by Brominated Flame Retardants and Halogenated Phenolics. Chemical Research in Toxicology. 2013;26(11):1692-702; DOI:10.1021/tx400342k.

  • 26. Grimm FA Lehmler HJ He XR Robertson LW Duffel MW. Sulfated Metabolites of Polychlorinated Biphenyls Are High-Affinity Ligands for the Thyroid Hormone Transport Protein Transthyretin. Environmental Health Perspectives. 2013;121(6):657-62; DOI:10.1289/ehp.1206198.

  • 27. Smythe TA Butt CM Stapleton HM Pleskach K Ratnayake G Song CY Riddell N Konstantinov A Tomy GT. Impacts of Unregulated Novel Brominated Flame Retardants on Human Liver Thyroid Deiodination and Sulfotransferation. Environmental Science & Technology. 2017;51(12):7245-53; DOI:10.1021/acs.est.7b01143.

  • 28. Bradshaw TD Trapani V Vasselin DA Westwell AD. The aryl hydrocarbon receptor in anticancer drug discovery: Friend or foe? Current Pharmaceutical Design. 2002;8(27):2475-90; DOI:10.2174/1381612023392784.

  • 29. Park WH Kang S Lee HK Salihovic S van Bavel B Lind PM Pak YK Lind L. Relationships between serum-induced AhR bioactivity or mitochondrial inhibition and circulating polychlorinated biphenyls (PCBs). Scientific Reports. 2017;7; DOI:10.1038/s41598-017-09774-1.

  • 30. Hoffman EC Reyes H Chu FF Sander F Conley LH Brooks BA Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science. 1991;252(5008):954-8; DOI:10.1126/science.1852076.

  • 31. Dolwick KM Swanson HI Bradfield CA. In-vitroanalysis of Ah receptor domains involved in ligand-activated DNA recognition. Proceedings of the National Academy of Sciences of the United States of America. 1993;90(18):8566-70; DOI:10.1073/pnas.90.18.8566.

  • 32. Sharma RP Schuhmacher M Kumar V. Review on crosstalk and common mechanisms of endocrine disruptors: Scaffolding to improve PBPK/PD model of EDC mixture. Environment International. 2017;99:1-14; DOI:10.1016/j.envint.2016.09.016.

  • 33. Kawajiri K Fujii-Kuriyama Y. Cytochrome P450 gene regulation and physiological functions mediated by the aryl hydrocarbon receptor. Archives of Biochemistry and Biophysics. 2007;464(2):207-12; DOI:10.1016/j.abb.2007.03.038.

  • 34. Whitehead SA Rice S. Endocrine-disrupting chemicals as modulators of sex steroid synthesis. Best Practice & Research Clinical Endocrinology & Metabolism. 2006;20(1):45-61; DOI:10.1016/j.beem.2005.09.003.

  • 35. Phillips KP Foster WG Leiss W Sahni V Karyakina N Turner MC Kacew S Krewski D. Assessing and managing risks arising from exposure to endocrine-active chemicals. Journal of Toxicology and Environmental Health-Part B-Critical Reviews. 2008;11(3-4):351-72; DOI:10.1080/10937400701876657.

  • 36. Basavarajappa MS Craig ZR Hernandez-Ochoa I Paulose T Leslie TC Flaws JA. Methoxychlor reduces estradiol levels by altering steroidogenesis and metabolism in mouse antral follicles in vitro. Toxicology and Applied Pharmacology. 2011;253(3):161-9; DOI:10.1016/j. taap.2011.04.007.

  • 37. Holloway AC Anger DA Crankshaw DJ Wu M Foster WG. Atrazine-induced changes in aromatase activity in estrogen sensitive target tissues. Journal of Applied Toxicology. 2008;28(3):260-70; DOI:10.1002/jat.1275.

  • 38. Arase S Ishii K Igarashi K Aisaki K Yoshio Y Matsushima A Shimohigashi Y Arima K Kanno J Sugimura Y. Endocrine Disrupter Bisphenol A Increases In Situ Estrogen Production in the Mouse Urogenital Sinus. Biology of Reproduction. 2011;84(4):734-42; DOI:10.1095/biolreprod.110.087502.

  • 39. Murata M Kang JH. Bisphenol A (BPA) and cell signaling pathways. Biotechnology Advances. 2018;36(1):311-27; DOI:10.1016/j.biotechadv.2017.12.002.

  • 40. Foster PMD. Mode of action: Impaired fetalLeydig cell function - Effects on male reproductive development produced by certain phthalate esters. Critical Reviews in Toxicology. 2005;35(8-9):713-9; DOI:10.1080/10408440591007395.

  • 41. Kristensen DM Skalkam ML Audouze K Lesne L Desdoits-Lethimonier C Frederiksen H Brunak S Skakkebæk NE Jégou B Hansen JB Junker S Leffers H. Many Putative Endocrine Disruptors Inhibit Prostaglandin Synthesis. Environmental Health Perspectives. 2011;119(4):534-41; DOI:10.1289/ehp.1002635.

  • 42. Jirtle RL Skinner MK. Environmental epigenomics and disease susceptibility. Nature Reviews Genetics. 2007;8(4):253-62; DOI:10.1038/nrg2045.

  • 43. Song C Kanthasamy A Anantharam V Sun F Kanthasamy AG. Environmental Neurotoxic Pesticide Increases Histone Acetylation to Promote Apoptosis in Dopaminergic Neuronal Cells: Relevance to Epigenetic Mechanisms of Neurodegeneration. Molecular Pharmacology. 2010;77(4):621-32; DOI:10.1124/mol.109.062174.

  • 44. Kang ER Iqbal K Tran DA Rivas GE Singh P Pfeifer GP Szabó PE. Effects of endocrine disruptors on imprinted gene expression in the mouse embryo. Epigenetics. 2011;6(7):937-50.DOI:10.4161/epi.6.7.16067.

  • 45. Collotta M Bertazzi PA Bollati V. Epigenetics and pesticides. Toxicology. 2013;307:35-41; DOI:10.1016/j.tox.2013.01.017.

  • 46. Turner BM. Epigenetic responses to environmental change and their evolutionary implications. Philosophical Transactions of the Royal Society B-Biological Sciences. 2009;364(1534):3403-18; DOI:10.1098/rstb.2009.0125.

  • 47. Chang HS Anway MD Rekow SS Skinner MK. RETRACTED: Transgenerational epigenetic imprinting of the male germline by endocrine disruptor exposure during gonadal sex determination (Retracted article. See vol. 150 pg. 2976 2009). Endocrinology. 2006;147(12):5524-41; DOI:10.1210/en.2006-0987.

  • 48. Nelson KG Sakai Y Eitzman B Steed T McLachlan J. Exposure to Diethylstilbestrol during a critical developmental period of the mouse reproductive-tract leads to persistent induction of 2 estrogen-regulated genes. Cell Growth & Differentiation. 1994;5(6):595-606; WOS:A1994NP79900005.

  • 49. Li SF Washburn KA Moore R Uno T Teng C Newbold RR McLachlan JA Negishi M. Developmental exposure to diethylstilbestrol elicits demethylation of estrogen-responsive lactoferrin gene in mouse uterus. Cancer Research. 1997;57(19):4356-9; WOS:A1997XZ01100036.

  • 50. Li SF Hansman R Newbold R Davis B McLachlan JA Barrett JC. Neonatal diethylstilbestrol exposure induces persistent elevation of c-fos expression and hypomethylation in its exon-4 in mouse uterus. Molecular Carcinogenesis. 2003;38(2):78-84; DOI:10.1002/mc.10147.

  • 51. Zama AM Uzumcu M. Fetal and Neonatal Exposure to the Endocrine Disruptor Methoxychlor Causes Epigenetic Alterations in Adult Ovarian Genes. Endocrinology. 2009;150(10):4681-91; DOI:10.1210/en.2009-0499.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 226 226 7
PDF Downloads 183 183 15