Cation homeostasis and transport related gene markers are differentially expressed in porcine buccal pouch mucosal cells during long-term cells primary culture in vitro

Open access

Abstract

The mucous membrane is composed of two layers. The layer of stratified squamous epithelium and the underlying layer of the connective tissue. The epithelium is composed of keratinocytes that are in different stages of differentiation, depending on their localization. In our research, after isolation of primary in vitro cultured buccal pouch mucosal cells, we observed keratinocytes in various stages of differentiation and fibroblasts. These cells, depending on the ionic dynamics, may be subject to different morphological and biochemical transformations. Understanding the expression profile of the normal oral mucosal tissue is important for further research into the effects of biomaterials on the mucosal cells, their growth, proliferation, and differentiation.

The porcine buccal pouch mucosal cells were used in this study. The oral mucosa was separated surgically and isolated enzymatically. The cells were in vitro cultured for 30 days, and after each step of in vitro culture (7 days, 15 days, 30 days), samples were collected for isolation of total RNA. The gene expression profile was measured using Affymetrix microarray assays.

In results, we observed genes belonging to two ontology groups: cation homeostasis and cation transport. These genes were up-regulated after 7 days of in vitro culture as compared to down-regulation after 15 and 30 days of in vitro culture. These results suggested that dynamic growth, proliferation and cell adhesion are more intense in the first 7 days of in vitro culture. We also observed, for the first time, the expression of ATP13A3 in porcine oral mucosal cells.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Chen J Ahmad R Li W Swain M Li Q. Biomechanics of oral mucosa. J R Soc Interface. 2015;12(109); DOI:10.1098/rsif.2015.0325.

  • 2. Agrawal U Rai H Jain AK. Morphological and ultrastructural characteristics of extracellular matrix changes in oral squamous cell carcinoma. Ind J Dent Res. 2011;22(1):16; DOI:10.4103/0970-9290.79968.

  • 3. Naumova EA Dierkes T Sprang J Arnold WH. The oral mucosal surface and blood vessels. Head Face Med. 2013;9:8; DOI:10.1186/1746-160X-9-8.

  • 4. Zhang H Zhang J Streisand JB. Oral mucosal drug delivery: clinical pharmacokinetics and therapeutic applications. Clin Pharmacokinet. 2002;41(9):661–80; DOI:10.2165/00003088-200241090-00003.

  • 5. Jansen RG van Kuppevelt TH Daamen WF Kuijpers-Jagtman AM Von den Hoff Johannes W. Tissue reactions to collagen scaffolds in the oral mucosa and skin of rats: environmental and mechanical factors. Arch Oral Biol. 2008;53(4):376–87; DOI:10.1016/j.archoralbio.2007.11.003.

  • 6. Dyszkiewicz-Konwińska M Nawrocki M Huang Y Bryja A Celichowski P Jankowski M Błochowiak K Mehr K Bruska M Nowicki M Zabel M Kempisty B. New gene markers for metabolic processes and homeostasis in porcine buccal pouch mucosa during cells long term-cultivation - a primary culture approach. IJMS. 2018;19(4):1027; DOI:10.3390/ijms19041027.

  • 7. Huang DW Sherman BT Tan Q Collins JR Alvord WG Roayaei J Stephens R Baseler MW Lane HC Lempicki RA. The DAVID Gene Functional Classification Tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biol. 2007;8(9):R183; DOI:10.1186/gb-2007-8-9-r183.

  • 8. Mering C von Jensen LJ Snel B Hooper SD Krupp M Foglierini M Jouffre N Huynen MA Bork P. STRING: known and predicted protein-protein associations integrated and transferred across organisms. Nucleic Acids Res. 2005;33(Database issue):D433-7; DOI:10.1093/nar/gki005.

  • 9. Deyrieux AF Wilson VG. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology. 2007;54(2):77–83; DOI:10.1007/s10616-007-9076-1.

  • 10. Parikh N Nagarajan P Sei-ichi M Sinha S Garrett-Sinha LA. Isolation and characterization of an immortalized oral keratinocyte cell line of mouse origin. Arch Oral Biol. 2008;53(11):1091–100; DOI:10.1016/j.archoralbio.2008.07.002.

  • 11. Li Y Yang J Li S Zhang J Zheng J Hou W Zhao H Guo Y Liu X Dou K Situ Z Yao L. N-myc downstream-regulated gene 2 a novel estrogen-targeted gene is involved in the regulation of Na+/K+-ATPase. J Biol Chem. 2011;286(37):32289–99; DOI:10.1074/jbc.M111.247825.

  • 12. Apell H-J Hitzler T Schreiber G. Modulation of the NaK-ATPase by Magnesium Ions. Biochemistry. 2017;56(7):1005–16; DOI:10.1021/acs.biochem.6b01243.

  • 13. Graf S Haimel M Bleda M Hadinnapola C Southgate L Li W Hodgson J Liu B Salmon RM Southwood M Machado RD Martin JM Treacy CM Yates K Daugherty LC Shamardina O Whitehorn D Holden S Aldred M Bogaard HJ Church C Coghlan G Condliffe R Corris PA Danesino C Eyries M Gall H Ghio S Ghofrani H-A Gibbs JSR Girerd B Houweling AC Howard L Humbert M Kiely DG Kovacs G MacKenzie Ross RV Moledina S Montani D Newnham M Olschewski A Olschewski H Peacock AJ Pepke-Zaba J Prokopenko I Rhodes CJ Scelsi L Seeger W Soubrier F Stein DF Suntharalingam J Swietlik EM Toshner MR van Heel DA Vonk Noordegraaf A Waisfisz Q Wharton J Wort SJ Ouwehand WH Soranzo N Lawrie A Upton PD Wilkins MR Trembath RC Morrell NW. Identification of rare sequence variation underlying heritable pulmonary arterial hypertension. Nat Commun. 2018;9(1):1416; DOI:10.1038/s41467-018-03672-4.

  • 14. Madan M Patel A Skruber K Geerts D Altomare DA Iv OP. ATP13A3 and caveolin-1 as potential biomarkers for difluoromethylornithine-based therapies in pancreatic cancers. Am J Cancer Res. 2016;6(6):1231–52.

  • 15. Esmaeili S-A Nejatollahi F Sahebkar A. Inhibition of intercellular communication between prostate cancer cells by a specific anti-STEAP-1 single chain antibody. Anticancer Agents Med Chem. 2017; DOI:10.2174/1871520618666171208092115.

  • 16. Gomes IM Rocha SM Gaspar C Alvelos MI Santos CR Socorro S Maia CJ. Knockdown of STEAP1 inhibits cell growth and induces apoptosis in LNCaP prostate cancer cells counteracting the effect of androgens. Med Oncol. 2018;35(3):40; DOI:10.1007/s12032-018-1100-0.

  • 17. Kim K Mitra S Wu G Berka V Song J Yu Y Poget S Wang D-N Tsai A-L Zhou M. Six-Transmembrane Epithelial Antigen of Prostate 1 (STEAP1) has a single b heme and is capable of reducing metal ion complexes and oxygen. Biochemistry. 2016;55(48):6673–84; DOI:10.1021/acs.biochem.6b00610.

  • 18. Challita-Eid PM Morrison K Etessami S An Z Morrison KJ Perez-Villar JJ Raitano AB Jia X-C Gudas JM Kanner SB Jakobovits A. Monoclonal antibodies to six-transmembrane epithelial antigen of the prostate-1 inhibit intercellular communication in vitro and growth of human tumor xenografts in vivo. Cancer Res. 2007;67(12):5798–805; DOI:10.1158/0008-5472.CAN-06-3849.

  • 19. Vaghjiani RJ Talma S Murphy CL. Six-transmembrane epithelial antigen of the prostate (STEAP1 and STEAP2)-differentially expressed by murine and human mesenchymal stem cells. Tissue Eng Part A. 2009;15(8):2073–83; DOI:10.1089/ten.tea.2008.0519.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 162 162 3
PDF Downloads 108 108 1