Transforming growth factor (TGF) – is it a key protein in mammalian reproductive biology?

Open access


The superfamily of transforming growth factors β (TGF-β) consists of cytokines that are crucial in regulating the organism’s biological functions and includes three isoforms of TGF-β protein, Anti-Müllerian Hormone (AMH), inhibin A and B, activins, 20 bone morphogenetic proteins (BMP1-20) and 9 growth factors (GDF1-9). Their signal transduction pathway involves three types of membrane receptors that exhibit a serine/threonine kinase activity, as well as the Smad proteins. After ligand binding, the Smad proteins are phosphorylated and translocated to the nucleus, where they interact with transcription factors and affect gene expression. TGF-β family members are involved in cell growth and differentiation, as well as chemo-taxis and apoptosis, and play an important role during an inflammation. Defects in TGF-β proteins or in their signalling pathway underlie many severe diseases, such as systemic lupus, systemic scleroderma, bronchial asthma, atherosclerosis, hyperthyroidism or cancer. These factors are also crucial in mammal reproductive functions, as they are involved in folliculogenesis, steroidogenesis, ovulation, maternal-embryo interaction, embryo development and uterine decidualization. Their defects result in issues with fertility. This review focuses on the relevance of TGF-β family members in a mammal reproduction with an emphasis on three TGF-β isoforms, inhibins A and B, GDF-9 and their signal transduction pathway.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Stępień-Wyrobiec O Hrycek A Wyrobiec G. Transforming growth factor beta (TGF-beta): Its structure function and role in the pathogenesis of systemic lupus erythematosus. Post Hig Med Dosw. 2008;62:688–93.

  • 2. Adorini L. Cytokine-based immunointervention in the treatment of autoimmune diseases. Clin Exp Immunol. 2003;132(2):185–92.

  • 3. Flanders KC Burmester JK. Medical applications of transforming growth factor-beta. Clin Med Res. 2003;1(1):13–20.

  • 4. Krzemień S Knapczyk P. Aktualne poglądy dotyczące znaczenia transformującego czynnika wzrostu beta (TGF-β) w patogenezie niektórych stanów chorobowych. Wiad Lek. 2005;58(9-10):536–9.

  • 5. Glister C Kemp CF Knight PG. Bone morphogenetic protein (BMP) ligands and receptors in bovine ovarian follicle cells: actions of BMP-4 -6 and -7 on granulosa cells and differential modulation of Smad-1 phosphorylation by follistatin. Reprod. 2004;127(2):239–54; DOI:10.1530/rep.1.00090.

  • 6. Glister C Richards SL Knight PG. Bone morphogenetic proteins (BMP) -4 -6 and -7 potently suppress basal and luteinizing hormone-induced androgen production by bovine theca interna cells in primary culture: could ovarian hyperandrogenic dysfunction be caused by a defect in thecal BMP signaling? Endocrinology. 2005;146(4):1883–92; DOI:10.1210/en.2004-1303.

  • 7. Knight PG Glister C. Local roles of TGF-beta superfamily members in the control of ovarian follicle development. Anim Reprod Sci. 2003;78(3-4):165–83.

  • 8. Massagué J Wotton D. Transcriptional control by the TGF-beta/Smad signaling system. EMBO J. 2000;19(8):1745–54; DOI:10.1093/emboj/19.8.1745.

  • 9. Moustakas A Pardali K Gaal A Heldin CH. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. Immunol Lett. 2002;82(1-2):85–91.

  • 10. Border WA Noble NA. Transforming growth factor beta in tissue fibrosis. N Engl J Med. 1994;331(19):1286–92; DOI:10.1056/NEJM199411103311907.

  • 11. Buck MB Fritz P Dippon J Zugmaier G Knabbe C. Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res. 2004;10(2):491–8.

  • 12. Pepper MS Belin D Montesano R Orci L Vassalli JD. Transforming growth factor-beta 1 modulates basic fibroblast growth factor-induced proteolytic and angiogenic properties of endothelial cells in vitro. J Cell Biol. 1990;111(2):743–55.

  • 13. Ziv E Cauley J Morin PA Saiz R Browner WS. Association between the T29--C polymorphism in the transforming growth factor beta1 gene and breast cancer among elderly white women: The Study of Osteoporotic Fractures. JAMA. 2001;285(22):2859–63.

  • 14. Ni N Li Q. TGFβ superfamily signaling and uterine decidualization. Reprod Biol Endocrinol. 2017;15(1):75; DOI:10.1186/s12958-017-0303-0.

  • 15. Knight PG Glister C. TGF-beta superfamily members and ovarian follicle development. Reproduction. 2006;132(2):191–206; DOI:10.1530/rep.1.01074.

  • 16. Tanimoto K Suzuki A Ohno S Honda K Tanaka N Doi T Yoneno K Ohno-Nakahara M Nakatani Y Ueki M Tanne K. Effects of TGF-beta on hyaluronan anabolism in fibroblasts derived from the syno-vial membrane of the rabbit temporomandibular joint. J Dent Res. 2004;83(1):40–4; DOI:10.1177/154405910408300108.

  • 17. Asano Y Ihn H Yamane K Kubo M Tamaki K. Impaired Smad7-Smurf-mediated negative regulation of TGF-beta signaling in scleroderma fibro-blasts. J Clin Invest. 2004;113(2):253–64; DOI:10.1172/JCI16269.

  • 18. Caserta TM Knisley AA Tan FK Arnett FC Brown TL. Genotypic analysis of the TGF beta-509 allele in patients with systemic lupus erythematosus and Sjogren’s syndrome. Ann Genet. 2004;47(4):359–63; DOI:10.1016/j.anngen.2004.07.003.

  • 19. Lu L-Y Cheng H-H Sung P-K Yeh J-J Shiue Y-L Chen A. Single-nucleotide polymorphisms of transforming growth factor-beta1 gene in Taiwanese patients with systemic lupus erythematosus. J Microbiol Immunol Infect. 2004;37(3):145–52.

  • 20. Feinberg MW Jain MK. Role of transforming growth factor-beta1/Smads in regulating vascular inflammation and atherogenesis. Panminerva Med. 2005;47(3):169–86.

  • 21. Niemczyk M Foroncewicz B Mucha K. Rola TGF beta. Pol Arch Med Wet. 2005;113(4):401–8.

  • 22. Luedecking EK DeKosky ST Mehdi H Ganguli M Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-β1 gene and the risk of Alzheimer’s disease. Hum Genet. 2000;106(5):565–9; DOI:10.1007/s004390000313.

  • 23. Maurya VK Jha RK Kumar V Joshi A Chadchan S Mohan JJ Laloraya M. Transforming growth factor-beta 1 (TGF-B1) liberation from its latent complex during embryo implantation and its regulation by estradiol in mouse. Biol Reprod. 2013;89(4):84; DOI:10.1095/biolreprod.112.106542.

  • 24. Wang Z-P Mu X-Y Guo M Wang Y-J Teng Z Mao G-P Niu W-B Feng L-Z Zhao L-H Xia G-L. Transforming growth factor-β signaling participates in the maintenance of the primordial follicle pool in the mouse ovary. J Biol Chem. 2014;289(12):8299–311; DOI:10.1074/jbc.M113.532952.

  • 25. Rosairo D Kuyznierewicz I Findlay J Drummond A. Transforming growth factor-beta: its role in ovarian follicle development. Reproduction. 2008;136(6):799–809; DOI:10.1530/REP-08-0310.

  • 26. Li Q Agno JE Edson MA Nagaraja AK Nagashima T Matzuk MM. Transforming Growth Factor β Receptor Type 1 Is Essential for Female Reproductive Tract Integrity and Function. PLoS Genet. 2011;7(10):e1002320; DOI:10.1371/journal.pgen.1002320.

  • 27. Robertson D. Inhibin/activin and ovarian cancer. Endocr Relat Cancer. 2004;11(1):35–49; DOI:10.1677/erc.0.0110035.

  • 28. Męczekalski B Podfigurna-Stopa A. Rola inhibin w funkcjach i dysfunkcjach rozrodczych kobiety. Pol Mer Lek. 2009.

  • 29. Makanji Y Zhu J Mishra R Holmquist C Wong WPS Schwartz NB Mayo KE Woodruff TK. Inhibin at 90: From Discovery to Clinical Application a Historical Review. Endocr Rev. 2014;35(5):747–94; DOI:10.1210/er.2014-1003.

  • 30. Florio P Severi FM Cobellis L Danero S Bomè A Luisi S Petraglia F. Serum activin A and inhibin A. New clinical markers for hydatidiform mole. Cancer. 2002;94(10):2618–22.

  • 31. Welt CK Schneyer AL. Differential regulation of inhibin B and inhibin a by follicle-stimulating hormone and local growth factors in human granulosa cells from small antral follicles. J Clin Endocrinol Metab. 2001;86(1):330–6; DOI:10.1210/jcem.86.1.7107.

  • 32. Burger HG Fuller PJ Chu S Mamers P Drummond A Susil B Neva P Robertson DM. The inhibins and ovarian cancer. Mol Cell Endocrinol. 2001;180(1-2):145–8; DOI:10.1016/S0303-7207(01)00519-6.

  • 33. Myers M Middlebrook BS Matzuk MM Pangas SA. Loss of inhibin alpha uncouples oocyte-granulosa cell dynamics and disrupts postnatal folliculogenesis. Dev Biol. 2009;334(2):458–67; DOI:10.1016/j.ydbio.2009.08.001.

  • 34. Belli M Shimasaki S. Molecular Aspects and Clinical Relevance of GDF9 and BMP15 in Ovarian Function. In: Ovarian Cycle: Elsevier; 2018. p. 317–48 [Vitamins and Hormones]; DOI:10.1016/bs.vh.2017.12.003.

  • 35. Jee BC Lee JR Suh CS Kim SH Moon SY. Follicular fluid growth differentiation factor-9 concentration and oocyte developmental competence. J Womens Med. 2011;4(1):1; DOI:10.5468/jwm.2011.4.1.1.

  • 36. Teixeira Filho FL Baracat EC Lee TH Suh CS Matsui M Chang RJ Shimasaki S Erickson GF. Aberrant expression of growth differentiation factor-9 in oocytes of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2002;87(3):1337–44; DOI:10.1210/jcem.87.3.8316.

  • 37. Castro FCd Cruz MHC Leal CLV. Role of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Ovarian Function and Their Importance in Mammalian Female Fertility — A Review. Asian Australas J Anim Sci. 2016;29(8):1065–74; DOI:10.5713/ajas.15.0797.

  • 38. Drummond AE. TGFbeta signalling in the development of ovarian function. Cell Tissue Res. 2005;322(1):107–15; DOI:10.1007/s00441-005-1153-1.

  • 39. Bierie B Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–20; DOI:10.1038/nrc1926.

  • 40. O sterlund C Fried G. TGFβ receptor types I and II and the substrate proteins Smad 2 and 3 are present in human oocytes. Mol Hum Reprod. 2000;6(6):498–503; DOI:10.1093/molehr/6.6.498.

  • 41. Miyazono K. Positive and negative regulation of TGF-beta signaling. J Cell Sci. 2000;113 (Pt 7):1101–9.

  • 42. Caestecker M de. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev. 2004;15(1):1–11; DOI:10.1016/j.cytogfr.2003.10.004.

  • 43. Derynck R Zhang YE. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature. 2003;425(6958):577–84; DOI:10.1038/nature02006.

  • 44. Moustakas A. Non-Smad TGF-signals. J Cell Sci. 2005;118(16):3573–84; DOI:10.1242/jcs.02554.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 159 159 6
PDF Downloads 119 119 5