Stemness specificity of epithelial cells – application of cell and tissue technology in regenerative medicine

Open access

Abstract

Stem cells are cells that have the potential to replicate and/or differentiate, becoming any tissue. This process could be theoretically repeated indefinitely and can be used to create or fix damaged parts any organ. There are many in vivo factors that cause stem cells to replicate and differentiate. Many of these interactions and mechanisms are still unknown. In vitro models have been successful in inducing stem cells to differentiate into the desired lineage using controlled methods. Recently, epithelial tissue has been successfully created using scaffolds on which stem cells are grown in vitro and then transplanted into the host. This transition creates significant problems. This is because in vitro -grown stem cells or stem cell-derived tissues are created in an isolated environment where virtually every aspect can be monitored and controlled. In vivo monitoring and controlling is significantly more difficult for a plethora of reasons. Cells in the body are constantly exposed to many signals and molecules which affect them. Many of the mechanisms behind these interactions and reactions are known but many others are not. As the corpus of knowledge grows, stem cells become closer to being applied in a clinical setting. In this paper, we review the current evidence on stem cell therapy in regenerative medicine and some of the challenges this field faces.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. van Bekkum DW. Stem cell transplantation in experimental models of autoimmune disease. J Clin Immunol. 2000;20(1):10–6.

  • 2. Angelini A Castellani C Ravara B Franzin C Pozzobon M Tavano R Libera LD Papini E Vettor R Coppi P de Thiene G Vescovo G. Stem-cell therapy in an experimental model of pulmonary hypertension and right heart failure: role of paracrine and neurohormonal milieu in the remodeling process. J Heart Lung Transplant. 2011;30(11):1281–93; DOI:10.1016/j.healun.2011.07.017.

  • 3. Elsaadany B El Kholy S El Rouby D Rashed L Shouman T. Effect of transplantation of bone marrow derived mesenchymal stem cells and platelets rich plasma on experimental model of radiation induced oral mucosal injury in albino rats. Int J Dent. 2017;2017; DOI:10.1155/2017/8634540.

  • 4. Mehta RH. Sourcing human embryos for embryonic stem cell lines: Problems and perspectives. Indian J Med Res. 2014;140(Suppl 1):S106-11.

  • 5. Harris DT Rogers I. Umbilical cord blood: a unique source of pluri-potent stem cells for regenerative medicine. Curr Stem Cell Res Ther. 2007;2(4):301–9.

  • 6. Hassan HT El-Sheemy M. Adult bone-marrow stem cells and their potential in medicine. J R Soc Med. 2004;97(10):465–71.

  • 7. Tadeu AMB Horsley V. Epithelial stem cells in adult skin. Curr Top Dev Biol. 2014;107:109–31; DOI:10.1016/B978-0-12-416022-4.00004-4.

  • 8. van der Sanden B Dhobb M Berger F Wion D. Optimizing stem cell culture. J Cell Biochem. 2010;111(4):801–7; DOI:10.1002/jcb.22847.

  • 9. Hu Y Lou B Wu X Wu R Wang H Gao L Pi J Xu Y. Comparative study on in vitro culture of mouse bone marrow mesenchymal stem cells. Stem Cells Int. 2018;2018; DOI:10.1155/2018/6704583.

  • 10. Guillot C Lecuit T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science. 2013;340(6137):1185–9; DOI:10.1126/science.1235249.

  • 11. Presland RB Dale BA. Epithelial structural proteins of the skin and oral cavity: function in health and disease. Crit Rev Oral Biol Med. 2000;11(4):383–408.

  • 12. Robboy SJ Kurita T Baskin L Cunha GR. New insights into human female reproductive tract development. Differentiation. 2017;97:9–22; DOI:10.1016/j.diff.2017.08.002.

  • 13. Guo J-H Xing G-L Fang X-H Wu H-F Zhang B Yu J-Z Fan Z-M Wang L-D. Proteomic profiling of fetal esophageal epithelium esophageal cancer and tumor-adjacent esophageal epithelium and immunohistochemical characterization of a representative differential protein PRX6. World J Gastroenterol. 2017;23(8):1434–42; DOI:10.3748/wjg.v23.i8.1434.

  • 14. Winning TA Townsend GC. Oral mucosal embryology and histology. Clin Dermatol. 2000;18(5):499–511.

  • 15. Blanpain C Horsley V Fuchs E. Epithelial stem cells: turning over new leaves. Cell. 2007;128(3):445–58; DOI:10.1016/j.cell.2007.01.014.

  • 16. Hu C Li L. Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells. Regen Med. 2016;11(1):105–32; DOI:10.2217/rme.15.79.

  • 17. Kumar V Abbas AK Aster JC Robbins SL Perkins JA. Robbins basic pathology: Lung. 9th ed. Philadelphia: Elsevier/Saunders; 2013.

  • 18. Rawlins EL Hogan BLM. Epithelial stem cells of the lung: privileged few or opportunities for many? Development. 2006;133(13):2455–65; DOI:10.1242/dev.02407.

  • 19. Wetsel RA Wang D Calame DG. Therapeutic potential of lung epithelial progenitor cells derived from embryonic and induced pluri-potent stem cells. Annu Rev Med. 2011;62:95–105; DOI:10.1146/annurev-med-052009-172110.

  • 20. Massaro D Massaro GD. Estrogen regulates pulmonary alveolar formation loss and regeneration in mice. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1154-9; DOI:10.1152/ajplung.00228.2004.

  • 21. Du Jun Garat C West J Thorn N Chow K Cleaver T Sullivan T Torchia EC Childs C Shade T Tadjali M Lara A Nozik-Grayck E Malkoski S Sorrentino B Meyrick B Klemm D Rojas M Wagner DH JR Majka SM. The pathology of bleomycin-induced fibrosis is associated with loss of resident lung mesenchymal stem cells that regulate effector T-cell proliferation. Stem Cells. 2011;29(4):725–35; DOI:10.1002/stem.604.

  • 22. Weiss DJ. Concise review: current status of stem cells and regenerative medicine in lung biology and diseases. Stem Cells. 2014;32(1):16–25; DOI:10.1002/stem.1506.

  • 23. Kokturk N Yıldırım F Gülhan PY Oh YM. Stem cell therapy in chronic obstructive pulmonary disease. How far is it to the clinic? Am J Stem Cells. 2018;7(3):56–71.

  • 24. Schweitzer KS Johnstone BH Garrison J Rush NI Cooper S Traktuev DO Feng D Adamowicz JJ van Demark M Fisher AJ Kamocki K Brown MB Presson RG JR Broxmeyer HE March KL Petrache I. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 2011;183(2):215–25; DOI:10.1164/rccm.201001-0126OC.

  • 25. Fujita Y Araya J Ito S Kobayashi K Kosaka N Yoshioka Y Kadota T Hara H Kuwano K Ochiya T. Suppression of autophagy by extracellular vesicles promotes myofibroblast differentiation in COPD pathogenesis. J Extracell Vesicles. 2015;4:28388; DOI:10.3402/jev.v4.28388.

  • 26. El-Badrawy MK Shalabi NM Mohamed MA Ragab A Abdelwahab HW. Stem cells and lung regeneration. Int J Stem Cells. 2016;9(1):31–5; DOI:10.15283/ijsc.2016.9.1.31.

  • 27. Elliott MJ Butler CR Varanou-Jenkins A Partington L Carvalho C Samuel E Crowley C Lange P Hamilton NJ Hynds RE Ansari T Sibbons P Fierens A McLaren C Roebuck D Wallis C Muthialu N Hewitt R Crabbe D Janes SM Coppi P de Lowdell MW Birchall MA. Tracheal replacement therapy with a stem cell-seeded graft: lessons from compassionate use application of a GMP-compliant tissue-engineered medicine. Stem Cells Transl Med. 2017;6(6):1458–64; DOI:10.1002/sctm.16-0443.

  • 28. Omori K Tada Y Suzuki T Nomoto Y Matsuzuka T Kobayashi K Nakamura T Kanemaru S Yamashita M Asato R. Clinical application of in situ tissue engineering using a scaffolding technique for reconstruction of the larynx and trachea. Ann Otol Rhinol Laryngol. 2008;117(9):673–8; DOI:10.1177/000348940811700908.

  • 29. Frese L Dijkman PE Hoerstrup SP. Adipose tissue-derived stem cells in regenerative medicine. Transfus Med Hemother. 2016;43(4):268–74; DOI:10.1159/000448180.

  • 30. Dominici M Le Blanc K Mueller I Slaper-Cortenbach I Marini F Krause D Deans R Keating A Prockop D Horwitz E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7; DOI:10.1080/14653240600855905.

  • 31. Krause DS Theise ND Collector MI Henegariu O Hwang S Gardner R Neutzel S Sharkis SJ. Multi-organ multi-lineage engraftment by a single bone marrow-derived stem cell. Cell. 2001;105(3):369–77.

  • 32. Mei SHJ Haitsma JJ Dos Santos CC Deng Y Lai PFH Slutsky AS Liles WC Stewart DJ. Mesenchymal stem cells reduce inflammation while enhancing bacterial clearance and improving survival in sepsis. Am J Respir Crit Care Med. 2010;182(8):1047–57; DOI:10.1164/rccm.201001-0010OC.

  • 33. Curley GF Hayes M Ansari B Shaw G Ryan A Barry F O’Brien T O’Toole D Laffey JG. Mesenchymal stem cells enhance recovery and repair following ventilator-induced lung injury in the rat. Thorax. 2012;67(6):496–501; DOI:10.1136/thoraxjnl-2011-201059.

  • 34. Nemeth K Leelahavanichkul A Yuen PST Mayer B Parmelee A Doi K Robey PG Leelahavanichkul K Koller BH Brown JM Hu X Jelinek I Star RA Mezey E. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med. 2009;15(1):42–9; DOI:10.1038/nm.1905.

  • 35. Cho K-A Woo S-Y Seoh J-Y Han H-S Ryu K-H. Mesenchymal stem cells restore CCl4-induced liver injury by an antioxidative process. Cell Biol Int. 2012;36(12):1267–74; DOI:10.1042/CBI20110634.

  • 36. Inamdar AC Inamdar AA. Mesenchymal stem cell therapy in lung disorders: pathogenesis of lung diseases and mechanism of action of mesenchymal stem cell. Exp Lung Res. 2013;39(8):315–27; DOI:10.3109/01902148.2013.816803.

  • 37. Wada H Yoshida S Suzuki H Sakairi Y Mizobuchi T Komura D Sato Y Yokoi S Yoshino I. Transplantation of alveolar type II cells stimulates lung regeneration during compensatory lung growth in adult rats. J Thorac Cardiovasc Surg. 2012;143(3):711-719.e2; DOI:10.1016/j.jtcvs.2011.09.024.

  • 38. Guo Z Draheim K Lyle S. Isolation and culture of adult epithelial stem cells from human skin. J Vis Exp. 2011;(49); DOI:10.3791/2561.

  • 39. Wu W Le AV Mendez JJ Chang J Niklason LE Steinbacher DM. Osteogenic performance of donor-matched human adipose and bone marrow mesenchymal cells under dynamic culture. Tissue Eng Part A. 2015;21(9-10):1621–32; DOI:10.1089/ten.TEA.2014.0115.

  • 40. Melief SM Zwaginga JJ Fibbe WE Roelofs H. Adipose tissue-derived multipotent stromal cells have a higher immunomodulatory capacity than their bone marrow-derived counterparts. Stem Cells Transl Med. 2013;2(6):455–63; DOI:10.5966/sctm.2012-0184.

  • 41. Akita S Akino K Hirano A Ohtsuru A Yamashita S. Noncultured autologous adipose-derived stem cells therapy for chronic radiation injury. Stem Cells Int. 2010;2010:532704; DOI:10.4061/2010/532704.

  • 42. Rigotti G Marchi A Galie M Baroni G Benati D Krampera M Pasini A Sbarbati A. Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: a healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 2007;119(5):1409-22; discussion 1423-4; DOI:10.1097/01.prs.0000256047.47909.71.

  • 43. Wolff SC Kedziora KM Dumitru R Dungee CD Zikry TM Beltran AS Haggerty RA Cheng J Redick MA Purvis JE. Inheritance of OCT4 predetermines fate choice in human embryonic stem cells. Mol Syst Biol. 2018;14(9):e8140; DOI:10.15252/msb.20178140.

  • 44. Wang Z Ge J Huang B Gao Q Liu B Wang L Yu L Fan Z Lu X Liu J. Differentiation of embryonic stem cells into corneal epithelium. Sci China C Life Sci. 2005;48(5):471–80.

  • 45. Rippon HJ Lane S Qin M Ismail N-S Wilson MR Takata M Bishop AE. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc Am Thorac Soc. 2008;5(6):717–22; DOI:10.1513/pats.200801-008AW.

  • 46. Ohtsuka S Dalton S. Molecular and biological properties of pluripotent embryonic stem cells. Gene Ther. 2008;15(2):74–81; DOI:10.1038/sj.gt.3303065.

  • 47. Dhar D Hsi-en Ho J. Stem cell research policies around the world. Yale J Biol Med. 2009;82(3):113–5.

Search
Journal information
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 183 183 5
PDF Downloads 122 122 2