The use of mesenchymal stem cells in veterinary medicine

Open access


Constant advances in medicine, both human and veterinary, lead to continuous discovery of new drugs and treatments. Recently, the aspect of stem cell use in regenerative medicine has been very popular. There are still too few clinical trials on animals that could precisely estimate the therapeutic efficacy of cell therapy. However, stem cells are a source of extraordinary potential for multiplication and differentiation which, if used properly, can prove to be an effective mean of treatment of numerous diseases that are currently considered untreatable. The purpose of review is the characterization and clinical use of stem cells in mostly occurring diseases. Particular attention has been given to the issue of mesenchymal stromal cells, which so far have been most widely used in clinical practice. Current research into stem cells has allowed scientists to discover many different types of these cells, describe their characteristics and divide them into groups, with the most important being embryonic stem cells and somatic (adult) stem cells. Adult stem cells, due to their availability and lack of ethical problems, are used in veterinary practice. Different types of mesenchymal stem cells are distinguished, based on their origin. Adipose tissue derived stem cells and stromal vascular fraction find the widest clinical application. In veterinary medicine, stem cells therapies are most commonly used in the case of horse orthopedic injuries and in diseases of various origin in dogs and cats. While further research is needed to confirm the effectiveness of cell therapies, they have much potential to find plenty of potential applications in future medicine.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Thomson JA Itskovitz-Eldor J Shapiro SS Waknitz MA Swiergiel JJ Marshall VS Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145-1147; DOI:10.1126/SCIENCE.282.5391.1145.

  • 2. Ullah I Subbarao RB Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2); DOI:10.1042/BSR20150025.

  • 3. Fortier LA Nixon AJ Williams J Cable CS. Isolation and chondrocytic differentiation of equine bone marrow-derived mesenchymal stem cells. Am J Vet Res. 1998;59(9):1182-1187.

  • 4. Zuk PA Zhu M Mizuno H Huang J Futrell JW Katz AJ Benhaim P Lorenz HP Hedrick MH. Multilineage Cells from Human Adipose Tissue: Implications for Cell-Based Therapies. TISSUE Eng. 2001;7(2).

  • 5. Wu P Sato K Yukawa S Hikasa Y Kagota K. Differentiation of Stromal-Vascular Cells Isolated from Canine Adipose Tissues in Primary Culture. J Vet Med Sci. 2001;63(1):17-23; DOI:10.1292/jvms.63.17.

  • 6. Young HE Black AC. Adult stem cells. Anat Rec. 2004;276A(1):75-102; DOI:10.1002/ar.a.10134.

  • 7. Chen KG Mallon BS McKay RDG Robey PG. Human pluripotent stem cell culture: considerations for maintenance expansion and therapeutics. Cell Stem Cell. 2014;14(1):13-26; DOI:10.1016/j.stem.2013.12.005.

  • 8. Rubin LL. Stem Cells and Drug Discovery: The Beginning of a New Era? Cell. 2008;132(4):549-552; DOI:10.1016/J.CELL.2008.02.010.

  • 9. Burdzińska A Idziak M. Komórki macierzyste w wetrynarii - fakty i mity. Mag Weter. 2013;22(194):695-704.

  • 10. Johansson CB Momma S Clarke DL Risling M Lendahl U Frisén J. Identification of a neural stem cell in the adult mammalian central nervous system. Cell. 1999;96(1):25-34; DOI:10.1016/S0092-8674(00)80956-3.

  • 11. Markoski MM. Advances in the Use of Stem Cells in Veterinary Medicine: From Basic Research to Clinical Practice. Scientifica (Cairo). 2016; DOI:10.1155/2016/4516920.

  • 12. Marquez-Curtis LA Janowska-Wieczorek A. Enhancing the migration ability of mesenchymal stromal cells by targeting the SDF-1/CXCR4 axis. Biomed Res Int. 2013;2013:561098; DOI:10.1155/2013/561098.

  • 13. Caplan AI. Mesenchymal Stem Cells: Time to Change the Name! Stem Cells Transl Med. 2017;6(6):1445-1451; DOI:10.1002/sctm.17-0051.

  • 14. Marx C Silveira MD Nardi NB. Adipose-Derived Stem Cells in Veterinary Medicine: Characterization and Therapeutic Applications Isolation and Characterization of Adipose-Derived Stem Cells. Stem Cells Dev. 2015;24(7):803-813; DOI:10.1089/scd.2014.0407.

  • 15. Gieryng A Bogunia-Kubik K. Znaczenie interakcji między SDF-1 i CXCR4 w hematopoezie i mobilizacji macierzystych komórek hematopoetycznych do krwi obwodowej. Postepy Hig Med Dosw. 2007;61:369-383.

  • 16. Kryczek I Lange A Mottram P Alvarez X Cheng P Hogan M Moons L Wei S Zou L Machelon V Emilie D Terrassa M Lackner A Curiel TJ Carmeliet P Zou W. CXCL12 and Vascular Endothelial Growth Factor Synergistically Induce Neoangiogenesis in Human Ovarian Cancers. Cancer Res. 2005;65(2):465-472.

  • 17. Sutton MT Fletcher D Episalla N Auster L Kaur S Gwin MC Folz M Velasquez D Roy V van Heeckeren R Lennon DP Caplan AI Bonfield TL. Mesenchymal Stem Cell Soluble Mediators and Cystic Fibrosis. J Stem Cell Res Ther. 2017;7(9); DOI:10.4172/2157-7633.1000400.

  • 18. Bonfield TL Lennon D Ghosh SK Dimarino AM Weinberg A Caplan AI. Cell based therapy aides in infection and inflammation resolution in the murine model of cystic fibrosis lung disease. Stem Cell Discov. 2013;3(2):139-153; DOI:10.4236/scd.2013.32019.

  • 19. Marx C Silveira MD Selbach I da Silva AS Braga LMG de M Camassola M Nardi NB. Acupoint injection of autologous stromal vascular fraction and allogeneic adipose-derived stem cells to treat hip dysplasia in dogs. Stem Cells Int. 2014;2014:391274; DOI:10.1155/2014/391274.

  • 20. Bourin P Bunnell BA Casteilla L Dominici M Katz AJ March KL Redl H Rubin JP Yoshimura K Gimble JM. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy. 2013;15(6):641-648; DOI:10.1016/j.jcyt.2013.02.006.

  • 21. Beerts C Suls M Broeckx SY Seys B Vandenberghe A Declercq J Duchateau L Vidal MA Spaas JH. Tenogenically Induced Allogeneic Peripheral Blood Mesenchymal Stem Cells in Allogeneic Platelet-Rich Plasma: 2-Year Follow-up after Tendon or Ligament Treatment in Horses. Front Vet Sci. 2017;4:158; DOI:10.3389/fvets.2017.00158.

  • 22. Smith RKW Werling NJ Dakin SG Alam R Goodship AE Dudhia J. Beneficial effects of autologous bone marrow-derived mesenchymal stem cells in naturally occurring tendinopathy. PLoS One. 2013;8(9):e75697; DOI:10.1371/journal.pone.0075697.

  • 23. Van Loon VJF Scheffer CJW Genn HJ Hoogendoorn AC Greve JW. Clinical follow-up of horses treated with allogeneic equine mesenchymal stem cells derived from umbilical cord blood for different tendon and ligament disorders. Vet Q. 2014;34(2):92-97; DOI:10.1080/01652176.2014.949390.

  • 24. Ricco S Renzi S Del Bue M Conti V Merli E Ramoni R Lucarelli E Gnudi G Ferrari M Grolli S. Allogeneic adipose tissue-derived mesenchymal stem cells in combination with platelet rich plasma are safe and effective in the therapy of superficial digital flexor tendonitis in the horse. Int J Immunopathol Pharmacol. 26(1 Suppl):61-68.

  • 25. Broeckx S Zimmerman M Crocetti S Suls M Mariën T Ferguson SJ Chiers K Duchateau L Franco-Obregón A Wuertz K Spaas JH. Regenerative Therapies for Equine Degenerative Joint Disease: A Preliminary Study. Kerkis I ed. PLoS One. 2014;9(1):e85917; DOI:10.1371/journal.pone.0085917.

  • 26. Carvalho A de M Badial PR A lvarez LEC Yamada ALM Borges AS Deffune E Hussni CA Garcia Alves AL. Equine tendonitis therapy using mesenchymal stem cells and platelet concentrates: a randomized controlled trial. Stem Cell Res Ther. 2013;4(4):85; DOI:10.1186/scrt236.

  • 27. Rink BE Amilon KR Esteves CL French HM Watson E Aurich C Donadeu FX. Isolation and characterization of equine endometrial mesenchymal stromal cells. Stem Cell Res Ther. 2017;8(1):166; DOI:10.1186/s13287-017-0616-0.

  • 28. Quimby JM Webb TL Gibbons DS Dow SW. Evaluation of intrarenal mesenchymal stem cell injection for treatment of chronic kidney disease in cats: a pilot study. J Feline Med Surg. 2011;13(6):418-426; DOI:10.1016/j.jfms.2011.01.005.

  • 29. Webb TL Quimby JM Dow SW. In vitro comparison of feline bone marrow-derived and adipose tissue-derived mesenchymal stem cells. J Feline Med Surg. 2012;14(2):165-168; DOI:10.1177/1098612X11429224.

  • 30. Kono S Kazama T Kano K Harada K Uechi M Matsumoto T. Phenotypic and functional properties of feline dedifferentiated fat cells and adipose-derived stem cells. Vet J. 2014;199(1):88-96; DOI:10.1016/j.tvjl.2013.10.033.

  • 31. Black LL Gaynor J Gahring D Adams C Aron D Harman S Gingerich DA Harman R. Effect of adipose-derived mesenchymal stem and regenerative cells on lameness in dogs with chronic osteoarthritis of the coxofemoral joints: a randomized double-blinded multicenter controlled trial. Vet Ther. 2007;8(4):272-284.

  • 32. Black LL Gaynor J Adams C Dhupa S Sams AE Taylor R Harman S Gingerich DA Harman R. Effect of intraarticular injection of autologous adipose-derived mesenchymal stem and regenerative cells on clinical signs of chronic osteoarthritis of the elbow joint in dogs. Vet Ther. 2008;9(3):192-200.

  • 33. Zhu CJ Dong JX Li J Zhang MJ Wang LP Luo L. Preliminary Study on the Mechanism of Acupoint Injection of Bone Marrow Mesenchymal Stem Cells in Improving Blood Flow in the Rat of Hind Limb Ischemia. J Tradit Chinese Med. 2011;31(3):241-245; DOI:10.1016/S0254-6272(11)60050-2.

  • 34. Chung D-J Hayashi K Toupadakis CA Wong A Yellowley CE. Osteogenic proliferation and differentiation of canine bone marrow and adipose tissue derived mesenchymal stromal cells and the influence of hypoxia. Res Vet Sci. 2012;92(1):66-75; DOI:10.1016/j.rvsc.2010.10.012.

  • 35. Koo OJ Hossein MS Hong SG Martinez-Conejero JA Lee BC. Cell cycle synchronization of canine ear fibroblasts for somatic cell nuclear transfer. Zygote. 2009;17(01):37-43; DOI:10.1017/S096719940800498X.

  • 36. Oh HJ Park JE Kim MJ Hong SG Ra JC Jo JY Kang SK Jang G Lee BC. Recloned dogs derived from adipose stem cells of a transgenic cloned beagle. Theriogenology. 2011;75(7):1221-1231; DOI:10.1016/j.theriogenology.2010.11.035.

  • 37. Iravani K Sobhanmanesh A Ashraf MJ Hashemi SB Mehrabani D Zare S. The Healing Effect of Conditioned Media and Bone Marrow-Derived Stem Cells in Laryngotracheal Stenosis: A Comparison in Experimental Dog Model. World J Plast Surg. 2017;6(2):190-197.

Journal information
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 280 280 33
PDF Downloads 204 204 17