Cytoplasmic and nuclear maturation of oocytes in mammals – living in the shadow of cells developmental capability

Open access

Abstract

The pig is a polyestrous animal in which the ovarian cycle lasts about 21 days and results in ovulation of 10-25 oocytes. Ovum reaches 120-150 μm in diameter, with the surrounding corona radiata providing communication with the environment. The zona pellucida is composed of glycoproteins: ZP1, ZP2, ZP3. In the course of oogenesis, RNA and protein accumulation for embryonic development occurs. Maternal mRNA is the template for protein production. Nuclear, cytoplasmic and genomic maturity condition the ability of the ovum to undergo fertilization. There are several differences in protein expression profiles observed between in vitro and in vivo conditions. Oogenesis is the process of differentiating female primary sex cells into gametes. During development gonocytes migrate from the yolk sac into the primary gonads with TGF-1, fibronectin, and laminin regulating this process. Cell cycle is blocked in dictyotene. Primary oocyte maturation is resumed before each ovulation and lasts until the next block in metaphase II. At the moment of penetration of the sperm into the ovum, the metaphase block is broken. The oocytes, surrounded by a single layer of granular cells, form the ovarian follicle. The exchange of signals between the oocyte and the cumulus cells done by gap-junctions, as well as various endo and paracrine signals. The contact between the corona radiata cells provides substances necessary for growth, through the same gap junctions. Studies on follicular cells can be used to amplify the knowledge of gene expression in these cells, in order to open way for potential clinical applications.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Bielański A. T. M. Biotechnologia rozrodu zwierząt udomowionych. Wydawnictwo i drukarnia DRUKROL 1997.

  • 2. Bartel H. and Państwowy Zakład Wydawnictw Lekarskich. Embriologia. Wydawnictwo Lekarskie PZWL 2012.

  • 3. Kotarska K. “Ekspansja komórek ziarnistych wzgórka jajonośnego : proces niezbędny do prawidłowego przebiegu owulacji i zapłodnienia” Postępy Biol. Komórki vol. 36 no. 2 pp. 171-187 2009.

  • 4. Wang Q. and Sun Q. Y. “Evaluation of oocyte quality: Morphological cellular and molecular predictors” Reprod. Fertil. Dev. vol. 19 no. 1 pp. 1-12 2007.

  • 5. Krisher R. L. “The effect of oocyte quality on development.” J. Anim. Sci. vol. 82 E-Suppl pp. E14-23 2004.

  • 6. Machatkova P. Hulinska J. Horakova Z. Reckova K. H. “Oestrous cycle stage influences the morphology and maturation of porcine oocytes in vitro” Orig. Pap. Vet. Med. vol. 53 no. 2 pp. 70-76 2008.

  • 7. Opiela J. K.-K. L. “Charakterystyka zdolnosci rozwojowej oocytow ssakow w aspekcie zaplodnienia i rozwoju zarodkowego. Cz. II. Regulacja dojrzalosci cytoplazmatycznej i genomowej” Biotechnologia no. 2 pp. 151-162 2005.

  • 8. Patrizio P. Fragouli E. Bianchi V. Borini A. and Wells D. “Molecular methods for selection of the ideal oocyte.” Reprod. Biomed. Online vol. 15 no. 3 pp. 346-53 Sep. 2007.

  • 9. Polanski Z. Molekularne podstawy rozrodczości człowieka i innych ssaków : praca zbiorowa pod redakcją prof. Macieja Kurpisza. Termedia Wydawnictwa Medyczne 2002.

  • 10. Bukowska D. Kempisty B. Ciesiolka S. Piotrowska H. Antosik P. Wozna M. Porowski S. Ociepa E. Maryniak H. Jaskowski J. M. Bryja A. N. M. “Molekularne aspekty procesu dojrzewania jądrowego i cytoplazmatycznego oocytów u świń” Med. Weter. vol. 69 no. 8 pp. 456-460 2013.

  • 11. Budna J. et al. “Expression of genes associated with BMP signaling pathway in porcine oocytes before and after IVM – a microarray approach” Reprod. Biol. Endocrinol. vol. 15 no. 1 p. 43 Dec. 2017.

  • 12. Coticchio G. Sereni E. Serrao L. Mazzone S. Iadarola I. and Borini A. “What Criteria for the Definition of Oocyte Quality?” Ann. N. Y. Acad. Sci. vol. 1034 no. 1 pp. 132-144 Dec. 2004.

  • 13. Eppig J. J. “Oocyte control of ovarian follicular development and function in mammals.” Reproduction vol. 122 no. 6 pp. 829-38 Dec. 2001.

  • 14. Jaskowski J. M. K.B. and Wozna M. Walczak R.Szczepanska P. Dziuban J. Jackowska M. A.P. “Wybrane metody oceny kompetencji rozwojowej oraz selekcji oocytów i zarodków bydlęcych” Med. Weter. vol. 66 no. 11 p. s.740-744 bibliogr. 2010.

  • 15. Opiela J. Kątska-Książkiewicz L. “Charakterystyka zdolności rozwojowej oocytów ssaków w aspekcie zapłodnienia i rozwoju zarodkowego. Cz. 1 Dojrzałość jądrowa i molekularne aspekty jej regulacji.” Biotechnologia vol. 3 pp. 107-118 2004.

  • 16. Wu D. Cheung Q. C.-K. Wen L. and Li J. “A Growth-Maturation System That Enhances the Meiotic and Developmental Competence of Porcine Oocytes Isolated from Small Follicles1” Biol. Reprod. vol. 75 no. 4 pp. 547-554 Oct. 2006.

  • 17. Moor R. M. Dai Y. Lee C. and Fulka J. “Oocyte maturation and embryonic failure.” Hum. Reprod. Update vol. 4 no. 3 pp. 223-36.

  • 18. Kempisty B. et al. “Zona pellucida glycoprotein 3 (pZP3) and integrin β2 (ITGB2) mRNA and protein expression in porcine oocytes after single and double exposure to brilliant cresyl blue test” Theriogenology vol. 75 no. 8 pp. 1525-1535 May 2011.

  • 19. Kempisty B. et al. “Expression and cellular distribution of zona pellucida glycoproteins in canine oocytes before and after in vitro maturation” Zygote vol. 23 no. 6 pp. 863-873 Dec. 2015.

  • 20. Budna J. et al. “Genes of cellular components of morphogenesis in porcine oocytes before and after IVM” Reproduction vol. 154 no. 4 pp. 535-545 Oct. 2017.

  • 21. Tinkanen H. Bläuer M. Laippala P. Tuohimaa P. and Kujansuu E. “Correlation between serum inhibin B and other indicators of the ovarian function.” Eur. J. Obstet. Gynecol. Reprod. Biol. vol. 94 no. 1 pp. 109-13 Jan. 2001.

  • 22. Hershey J. W. B. “Translational Control in Mammalian Cells” Annu. Rev. Biochem. vol. 60 no. 1 pp. 717-755 Jun. 1991.

  • 23. Shim C. Lee S. G. Song W. K. Lee C. S. Lee K.-K. and Kim K. “Laminin chain-specific gene expression during mouse oocyte maturation” Mol. Reprod. Dev. vol. 48 no. 2 pp. 185-193 Oct. 1997.

  • 24. Diaz F. J. Wigglesworth K. and Eppig J. J. “Oocytes determine cumulus cell lineage in mouse ovarian follicles” J. Cell Sci. vol. 120 no. 8 pp. 1330-1340 Mar. 2007.

  • 25. Gilchrist R. B. et al. “Immunoneutralization of Growth Differentiation Factor 9 Reveals It Partially Accounts for Mouse Oocyte Mitogenic Activity1” Biol. Reprod. vol. 71 no. 3 pp. 732-739 Sep. 2004.

  • 26. Albertini D. F. Combelles C. M. Benecchi E. and Carabatsos M. J. “Cellular basis for paracrine regulation of ovarian follicle development.” Reproduction vol. 121 no. 5 pp. 647-53 May 2001.

  • 27. Matzuk M. M. Burns K. H. Viveiros M. M. and Eppig J. J. “Intercellular Communication in the Mammalian Ovary: Oocytes Carry the Conversation” Science (80-. ). vol. 296 no. 5576 pp. 2178-2180 Jun. 2002.

  • 28. Matzuk M. M. et al. “Transgenic models to study the roles of inhibins and activins in reproduction oncogenesis and development.” Recent Prog. Horm. Res. vol. 51 pp. 123-54-7 1996.

  • 29. Yamazaki Y. Wakayama T. and Yanagimachi R. “Contribution of cumulus cells and serum to the maturation of oocyte cytoplasm as revealed by intracytoplasmic sperm injection (ICSI).” Zygote vol. 9 no. 4 pp. 277-82 Nov. 2001.

  • 30. Kranc W. Chachuła A. Wojtanowicz-Markiewicz K. S. C. Ociepa E. Bukowska D. Borys S. Piotrowska H. Bryja A. Antosik P. Brüssow K. P. Nowicki M. Kempisty B. Bruska M. “The Insight into Developmental Capacity of Mammalian Cocs and Cumulus-Granulosa Cells-Recent Studies and Perspectives” Austin J. Invit. Fertil. vol. 2 no. 3 pp. 1023-1027 2015.

  • 31. Guigon C. J. and Magre S. “Contribution of Germ Cells to the Differentiation and Maturation of the Ovary: Insights from Models of Germ Cell Depletion” Biol. Reprod. vol. 74 no. 3 pp. 450-458 Mar. 2006.

  • 32. Van Soom A. Tanghe S. De Pauw I. Maes D. and de Kruif A. “Function of the cumulus oophorus before and during mammalian fertilization.” Reprod. Domest. Anim. vol. 37 no. 3 pp. 144-51 Jun. 2002.

  • 33. Antosik P. et al. “Assessment of transcript and protein levels contributing to cell cycle control and gap junction connections in morphologically variable groups of porcine cumulus-oocyte complexes” Vet. Med. (Praha). vol. 55 no. 10 pp. 512-521 2010.

  • 34. Carabatsos M. J. Sellitto C. Goodenough D. A. and Albertini D. F. “Oocyte–Granulosa Cell Heterologous Gap Junctions Are Required for the Coordination of Nuclear and Cytoplasmic Meiotic Competence” Dev. Biol. vol. 226 no. 2 pp. 167-179 Oct. 2000.

  • 35. Bukowska D. Kempisty B.Zawierucha P. PiotrowskaH. Antosik P. Jackowska M. Jaskowski J. M. Bryja A. N. M. “Wybrane aspekty zwiazane z zapłodnieniem in vitro u świń” Med. Weter. vol. 68 no. 12 pp. 717-721 2012.

  • 36. Robinson L. L. Gaskell T. L. Saunders P. T. and Anderson R. A. “Germ cell specific expression of c-kit in the human fetal gonad.” Mol. Hum. Reprod. vol. 7 no. 9 pp. 845-52 Sep. 2001.

  • 37. Yoshinaga K. et al. “Role of c-kit in mouse spermatogenesis: identification of spermatogonia as a specific site of c-kit expression and function.” Development vol. 113 no. 2 pp. 689-99 Oct. 1991.

  • 38. Kranc W. et al. “Expression Profile of Genes Regulating Steroid Biosynthesis and Metabolism in Human Ovarian Granulosa Cells A Primary Culture Approach” Int. J. Mol. Sci. vol. 18 no. 12 p. 2673 Dec. 2017.

  • 39. Nawrocki M. J. et al. “The blood vessels development morphogenesis and blood circulation are three ontologic groups highly up-regulated in porcine oocytes before in vitro maturation” Adv. Cell Biol. vol. 5 no. 2 pp. 135-142 Jan. 2017.

Search
Journal information
Cited By
Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 677 439 17
PDF Downloads 357 258 8