Plant Aquaporins


This mini-review briefly presents the main types of plant aquaporins, highlighting their importance for different plant species and for plant cellular functions. Aquaporins (AQPs), families of water channel proteins (WCPs) are transmembrane proteins that are present in prokaryotes, animals, plants, and humans. The plant aquaporins are part of the Major Intrinsic Proteins (MIPs) family which resides in the following plant organs: roots, stems, leaves, flowers, fruits, and seeds. According to the sub-cellular localization, to their sequence homologies and to their phylogenetic distribution, plant aquaporins have been divided in five subgroups: (a) plasma membrane intrinsic proteins (PIPs); (b) tonoplast intrinsic proteins (TIPs); (c) Nodulin26-like intrinsic membrane proteins (NIPs); (d) small basic intrinsic proteins (SIPs) and (e) uncharacterized intrinsic proteins (XIPs). Different subclasses of the plant aquaporins allow several types of transport using: water, glycerol, urea, hydrogen peroxide, organic acids, ethanol, methanol, arsenite, lactic acid, and gaseous compounds. Plant aquaporins have a significant role in cell response to cold stress, photosynthesis, plant growth, cell elongation, reproduction, and seed germination.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Abascal F, Irisarri I, Zardoya R (2014) Diversity and evolution of membrane intrinsic proteins. Biochimica et Biophysica Acta 1840:1468–1481.

  • 2. Agre P (2004) Aquaporin water channels (Nobel lecture). Angew. Chem. Int. Ed. Engil. 43:4278–4290. doi: 10.1002/anie.200460804

  • 3. Agre P, Sasaki S, Chrispeels MJ (1993) Aquaporins: a family of water channel proteins. Am J Physiol. 265 (3 Pt 2):F461. doi:10.1152/ajprenal.1993.265.3.F461

  • 4. Balarynová J, Danihlik J, Fellner M (2018) Changes in plasma membrane aquaporin gene expression under osmotic stress and blue light in tomato. Acta Physiol Plant 40:27.

  • 5. Benga G (2012) On the definition, nomenclature and classification of water channel proteins (aquaporins and relatives). Molecular Aspects of Medicine 33:514–517.

  • 6. Benga G (2013) Comparative studies of water permeability of red blood cells from humans and over 30 animal species: an overview of 20 years of collaboration with Philip Kuchel. Eur. Biophys. J. 42:33–46. doi: 10.1007/s00249-012-0868-7

  • 7. Benga G, Popescu O, Borza V, Pop VI, Muresan A, Mocsy I et al (1986a) Water permeability in human erythrocytes: identification of membrane proteins involved in water transport. Eur. J. Cell Biol. 41:252–262. doi: 10.1021/bi00355a011

  • 8. Benga G, Popescu O, Pop VI, Holmes RP (1986b) p-(Chloromercuri) benzenesulfonate binding by membrane proteins and the inhibition of water transport in human erythrocytes. Biochemistry 25:1535–1538. doi: 10.1021/bi00355a011

  • 9. Benga O, Huber V J (2012) Brain water channel proteins in health and disease. Mol. Aspects Med. 33:562–578. doi: 10.1016/j.mam.2012.03.008

  • 10. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochimica et Biophysica Acta 1840:1596–1604.

  • 11. Bienert GP, Heinen RB, Berny MC, Chaumont F (2014) Maize plasma membrane aquaporin ZmPIP2;5, but not ZmPIP1;2, facilitates transmembrane diffusion of hydrogen peroxide. Biochimica et Biophysica Acta 1838:216–222.

  • 12. Daniels MJ, Chrispeels MJ, Yeager M (1999) Projection structure of a plant vacuole membrane aquaporine by electron cryo-crystallography. Journal of Molecular Biology 294(5):1337–1349.

  • 13. Deshmukh RK, Sonah H, Bélanger RR (2016) Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. Front Plant Sci. 7:1896. doi: 10.3389/fpls.2016.01896

  • 14. Ding L, Gao C, Li Y, Li Y, Zhu Y, Xu G, Shen Q, Kaldenhoff R, Kai L, Guo S (2015) The enhanced drought tolerance of rice plants under ammonium isrelated to aquaporin (AQP). Plant Science 234:14–21.

  • 15. Ding L, Uehlein N, Kaldenhoff R, Guo S, Zhu Y, Kai L (2019) Aquaporin PIP2;1 affects water transport and root growth in rice (Oryza sativa L.). Plant Physiology and Biochemistry 139:152–160.

  • 16. Fox AR, Maistriaux LC, Chaumont F (2017) Toward understanding of the high number of plant aquaporin isoforms and multiple regulation mechanisms. Plant Science 264:179–187.

  • 17. Frick A, Järvå M, Törnroth-Horsefield S (2013) Structural basis for pH gating of plant aquaporins. FEBS Letters 587:989–993.

  • 18. Gomes D, Agasse A, Thiébaud P, Delrot S, Gerós H, Chaumont F (2009) Aquaporins are multifunctional water and solute transporters highly divergent in living organisms. Biochimica et Biophysica Acta 1788:1213–1228. doi: 10.1016/j.bbamem.2009.03.009

  • 19. Hachez C, Besserer A, Chevalier AS, Chaumont F (2013) Insights into plant plasma membrane aquaporin trafficking. Trends in Plant Science, 18 (6):344-352.

  • 20. Hernandez-Sanchez IE, Maruri-Lopez I, Molphe-Balch EP, Becerra-Flora A, Jaimes-Miranda F, Jimenez-Bremont JF (2019) Evidence for in vivo interactions between dehydrins and the aquaporin AtPIP2B. Biochemical and Biophysical Research Communications 510:545–550. doi: 10.1016/j.bbrc.2019.01.095

  • 21. Iglesias-Acosta M, Martínez-Ballesta CM, Teruel JA, Carvajal M (2010) The response of broccoli plants to high temperature and possible role of root aquaporins. Environmental and Experimental Botany 68:83–90. doi: 10.1016/j.envexpbot.2009.10.007

  • 22. Jahn TP, Møller ALB, Zeuthen T, Holm LM, Klærke DA, Mohsin B, Kuhlbrandt W, Schjoerring JK (2004) Aquaporin homologues in plants and mammals transport ammonia. FEBS Letters 574:31–36. doi: 10.1016/j.febslet.2004.08.004

  • 23. Kaldenhoff R, Fischer M (2006) Functional aquaporin diversity in plants. Biochimica et Biophysica Acta 1758:1134–1141. doi: 10.1016/j.bbamem.2006.03.012

  • 24. Kaldenhoff R, Kai L, Uehlein N (2014) Aquaporins and membrane diffusion of CO2 in living organisms. Biochimica et Biophysica Acta 1840:1592–1595.

  • 25. Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biological Research 51:4.

  • 26. Kozumi T, Kitagawa Y (2016) Water structure changes induced by ceramics can be detected by increased permeability through aquaporin. Biochemistry and Biophysics Reports 5:353–358.

  • 27. Kruse E, Uehlein N, Kaldenhoff R (2006) The aquaporins. Genome Biology 7(206) doi:10.1186/gb-2006-7-2-206

  • 28. Lambert J, Mejia S, Vojdani A (2019) Plant and human aquaporins: pathogenesis from gut to brain. Immunol Res 67(1):12–20.

  • 29. Leitao L, Prista C, Loureiro-Dias MC, Moura TF, Soveral G (2014) The grapevine tonoplast aquaporin TIP2;1 is a pressure gated water channel. Biochemical and Biophysical Research Communications 450:289–294.

  • 30. Li G, Santoni V, Maurel C (2014) Plant aquaporins: Roles in plant physiology. Biochimica et Biophysica Acta 1840:1574–1582.

  • 31. Mara de Andrade L, Macedo Nobile P, Vasconcelos Ribeiro R, Nebó Carlos de Oliveira JF, Vargas de Oliveira Figueira A, Tadeu Marques Frigel L, Nunes D, Perecin D, dos Santos Brito M, Célia de Matos Pires R, Guimarães de Andrade Landell M, Creste S (2016) Characterization of PIP2 aquaporins in Saccharum hybrids. Plant Gene 5:31–37.

  • 32. Martinez-Ballesta M del C, Carvajal M (2014) New challenges in plant aquaporin biotechnology. Plant Science 217-218:71–77.

  • 33. Mateluna P, Salvatierra A, Solis S, Nuñez G, Pimentel P (2018) Involvement of aquaporin NIP1;1 in the contrasting tolerance response to root hypoxia in Prunus rootstocks. Journal of Plant Physiology 228:19–28.

  • 34. Maurel C (2007) Plant aquaporins: Novel functions and regulation properties. FEBS Letters 581:2227–2236. doi: 10.1016/j.febslet.2007.03.021

  • 35. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev. 95(4):1321 New challenges in plant aquaporin biotechnology. Plant Science 1358. doi: 10.1152/physrev.00008.2015

  • 36. Maurel C, Reizer J, Schroeder JL, Chrispeels MJ (1993) The vascular membrane protein gamma-TIP creates water specific channels in Xenopus oocytes. EMBO J. 12:2241–2247

  • 37. Maurel C, Santoni V, Luu D-T, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expression and functions. Current Opinion in Plant Biology 12:690–698. doi: 10.1016/j.pbi.2009.09.002

  • 38. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu. Rev. Plant Biol. 59:595–624. doi: 10.1146/annurev.arplant.59.032607.092734

  • 39. Nada RM, Abogadallah GM (2019) Contrasting root traits and native regulation of aquaporin differentially determine the outcome of overexpressing a single aquaporin (OsPIP2;4) in two rice cultivars. Protoplasma 1–13.

  • 40. Papadopoulos MC, Verkman AS (2012) Aquaporin 4 and neuromyelitis optica. Lancet Neurol. 11:535–544. doi: 10.1016/S1474-4422(12)70133-3

  • 41. Pawłowicz I, Masajada K (2019) Aquaporins as a link between water relations and photosynthetic pathway in abiotic stress tolerance in plants. Gene 687:166–172.

  • 42. Piotrovskii MS, Lapshin NK, Andreev IM, Trofimova MS (2019) Role of PIPAquaporin phosphorylation in redox-dependent modulation of osmotic water permeability in plasmalemma from roots of pea seedlings. Russ J Plant Physiol 66:637–645.

  • 43. Ranganathan K, Kayal WE, Cooke JEK, Zwiazek JJ (2016) Response of hybrid aspen over-expressing a PIP2;5 aquaporin to low root temperature. Journal of Plant Physiology 192:98–104.

  • 44. Rouge P, Barre A (2008) A molecular modeling approach defines a new group of Nodulin 26-like aquaporins in plants. Biochemical and Biophysical Research Communications 367:60–66. doi: 10.1016/j.bbrc.2007.12.079

  • 45. Shapiguzov YA (2004) Aquaporins: Structure, Systematics, and Regulatory Features. Russian Journal of Plant Physiology 51 (1): 127–137. doi: 10.1023/B:RUPP.0000011313.02617.49

  • 46. Sutka M, Amodeo G, Ozu M (2017) Plant and animal aquaporins crosstalk: what can be revealed from distinct perspectives. Biophys Rev 9 (5):545–562.

  • 47. Tan X, Xu H, Khan S, Equiza MA, Lee SH, Vaziriyeganeh M, Zwiazek JJ (2018) Plant water transport and aquaporins in oxygen-deprived environments. Journal of Plant Physiology 227:20–30.

  • 48. Tanghe A, Van Dijck P, Thevelein JM (2006) Why do microorganisms have aquaporins? Trends Microbiol. 14:78–85. doi: 10.1016/j.tim.2005.12.001

  • 49. Venkatesh J, Yu J-W, Park SW (2013) Genome-wide analysis and expression profiling of the Solanum tuberosum aquaporins. Plant Physiology and Biochemistry 73:392-404.

  • 50. Verdoucq L, Rodrigues O, Martiniere A, Luu D-T, Maurel C (2014) Plant aquaporins on the move: reversible phosphorylation, lateral motion and cycling. Current Opinion in Plant Biology 22:101–107.

  • 51. Verkman AS (2013) Aquaporins. Curr Biol. 23(2): R52–R55. doi: 10.1016/j.cub.2012.11.025

  • 52. Wudick MM, Li X, Valentini V, Geldner N, Chory J, Lin J, Maurel C, Luu D-T (2015) Subcellular redistribution of root aquaporins induced by hydrogen peroxide. Mol. Plant. 8:1103–1114.

  • 53. Wudick MM, Luu D-T, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytologist 184 (2):289-302,

  • 54. Yaneff A, Sigaut L, Gómez N, Fandiño CA, Alleva K, Pietrasanta LI, Amodeo G (2016) Loop B serine of a plasma membrane aquaporin type PIP2 but not PIP1 plays a key role in pH sensing. Biochimica et Biophysica Acta 1858:2778–2787.

  • 55. Yaneff A, Vitali V, Amodeo G (2015) PIP1 aquaporins: intrinsec water channels or PIP2 aquaporin modulators? FEBS Letters 589:3508–3515.

  • 56. Yoo Y-J, Lee HK, Han W, Kim DH, Lee MH, Jeon J, Lee DW, Lee J, Lee Y, Lee J, Kim JS, Cho Y, Han J-K, Hwang I (2016) Interactions between transmembrane helices within monomers of the aquaporin AtPIP2;1 play a crucial role in tetramer formation. Mol. Plant. 9:1004–1017.

  • 57. Yue C, Cao H, Wang L, Zhou Y, Hao X, Zeng J, Wang X, Yang Y (2014) Molecular cloning and expression analysis of tea plant aquaporin (AQP) gene family. Plant Physiology and Biochemistry 83:65–76.

  • 58. Zargar SM, Nagar P, Deshmukh R, Nazir M, Wani AA, Masoodi KZ, Agrawal GK, Rakwal R (2017) Aquaporins as potential drought tolerance inducing proteins: Towards instigating stress tolerance. Journal of Proteomics 169:233–238.

  • 59. Zhang B, Xie L, Sun T, Ding B, Li Y, Zhang Y (2019) Chrysanthemum morifolium aquaporin genes CmPIP1 and CmPIP2 are involved in tolerance to salt stress. Scientia Horticulturae 256 (108627):1-8.

  • 60. Zhu F, Ming R (2019) Global identification and expression analysis of pineapple aquaporins revealed their roles in CAM photosynthesis, boron uptake and fruit domestication. Euphytica 215:132.


Journal + Issues