MicroRNAs: potential regulators of airway smooth muscle cell plasticity involved in asthma-induced airway remodeling

Open access

Abstract

Background: Airway remodeling, which is fundamentally disordered in asthma, is related to the severity of asthma and poor response to current therapies. During airway remodeling, airway smooth muscle cells are not simply target cells, but participate actively in enhancing airway remodeling through changes induced by cellular plasticity.

Objective: We indicated that microRNAs, a class of regulatory non-coding RNAs, could regulate cellular plasticity at the posttranscriptional level. Here, we discuss the roles of microRNAs as regulators of plasticity in airway smooth muscle cells and possible mechanisms by which microRNAs modulate airway.

Methods: We conducted a literature search using the MEDLINE (PubMed) databases using the keywords “asthma”, “microRNAs”, “airway remodeling”, and “cellular plasticity”. Only articles published in English were included in the review.

Results: MicroRNAs, which regulated cellular plasticity in airway smooth muscle cells, was shown to modulate airway remodeling in asthma through different mechanisms.

Conclusion: MicroRNAs can be expected to be developed into a novel treatment strategy for reversing airway remodeling in patients with asthma.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1. Pepe C Foley S Shannon J Lemiere C Olivenstein R Ernst P et al. Differences in airway remodeling between subjects with severe and moderate asthma. J Allergy Clin Immunol. 2005; 116:544-9.

  • 2. Dekkers BGJ Maarsingh H Meurs H Gosens R. Airway structural components drive airway smooth muscle remodeling in asthma. Proc Am Thorac Soc. 2009; 6:683-92.

  • 3. Bai TR. Evidence for airway remodeling in chronic asthma. Curr Opin Allergy Clin Immunol. 2010; 10:82-6.

  • 4. Kuo C Lim S King NJC Bartlett NW Walton RP Zhu J et al. Rhinovirus infection induces expression of airway remodelling factors in vitro and in vivo. Respirology. 2011; 16:367-77.

  • 5. Leigh R Ellis R Wattie JN Hirota JA Matthaei KI Foster PS et al. Type 2 cytokines in the pathogenesis of sustained airway dysfunction and airway remodeling in mice. Am J Respir Crit Care Med. 2004; 169:860-7.

  • 6. Hakonarson H Maskeri N Carter C Grunstein MM. Regulation of TH1-and TH2-type cytokine expression and action in atopic asthmatic sensitized airway smooth muscle. J Clin Invest. 1999; 103:1077-88.

  • 7. Dekkers BG Bos IS Zaagsma J H. M. Functional consequences of human airway smooth muscle phenotype plasticity. Br J Pharmacol. 2012 166:359-67.

  • 8. Hirota JA Nguyen TTB Schaafsma D Sharma P Tran T. Airway smooth muscle in asthma: phenotype plasticity and function. Pulm Pharmacol Ther. 2009; 22:370-8.

  • 9. Roscioni SS Prins AG Elzinga CRS Menzen MH Dekkers BGJ Halayko AJ et al. Protein kinase A and the exchange protein directly activated by cAMP (Epac) modulate phenotype plasticity in human airway smooth muscle. Br J Pharmacol. 2011; 164: 958-69.

  • 10. Chuang JC Jones PA. Epigenetics and microRNAs. Pediatr Res. 2007; 61:17R-23R.

  • 11. Fabian MR Sonenberg N Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010; 79:351-79.

  • 12. Tsai LM Yu D. MicroRNAs in common diseases and potential therapeutic applications. Clin Exp Pharmacol Physiol. 2010; 37:102-7.

  • 13. Bartel DP. MicroRNAs: Genomics Biogenesis Mechanism and Function. Cell. 2004; 116:281-97.

  • 14. Lee RC Feinbaum RL Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993; 75: 843-54.

  • 15. Friedman RC Farh KKH Burge CB Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009; 19:92-105.

  • 16. Calin GA Sevignani C Dumitru CD Hyslop T Noch E Yendamuri S et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA. 2004; 101:2999-3004.

  • 17. Lee Y Ahn C Han J Choi H Kim J Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature. 2003; 425:415-9.

  • 18. Han J Lee Y Yeom KH Kim YK Jin H Kim VN. The Drosha-DGCR8 complex in primary microRNAprocessing. Genes Dev. 2004; 18:3016-27.

  • 19. Berezikov E Chung WJ Willis J Cuppen E Lai EC. Mammalian mirtron genes. Mol Cell. 2007; 28:328-36.

  • 20. Cai X Hagedorn CH Cullen BR. Human microRNAs are processed from capped polyadenylated transcripts that can also function as mRNAs. RNA. 2004; 10: 1957-66.

  • 21. Lee Y Kim M Han J Yeom KH Lee S Baek SH Kim VN. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 2004; 23:4051-60.

  • 22. Borchert GM Lanier W Davidson BL. RNA polymerase III transcribes human microRNAs. Nat Struct Mol Biol. 2006; 13:1097-101.

  • 23. Altuvia Y Landgraf P Lithwick G Elefant N Pfeffer S Aravin A et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005; 33: 2697-706.

  • 24. Kim VN. MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol. 2005; 6: 376-85.

  • 25. Kim VN Han J Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol. 2009; 10:126-39.

  • 26. Baskerville S Bartel DP. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA. 2005; 11: 241-7.

  • 27. Kim YK Kim VN. Processing of intronic microRNAs. EMBO J. 2007; 26:775-83.

  • 28. Lund E Göttinger S Calado A Dahlberg JE Kutay U. Nuclear export of microRNA precursors. Science. 2004; 303:95-8.

  • 29. Yi R Qin Y Macara IG Cullen BR. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 2003; 17:3011-6.

  • 30. Koscianska E Starega-Roslan J Krzyzosiak WJ. The Role of Dicer Protein Partners in the Processing of MicroRNA Precursors. PLoS ONE. 2011; 6:e28548.

  • 31. Lee Y Hur I Park SY Kim YK Suh MR Kim VN. The role of PACT in the RNA silencing pathway. EMBO j. 2006; 25:522-32.

  • 32. Zhou H Huang X Cui H Luo X Tang Y Chen S et al. miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells. Blood. 2010; 116:5885-94.

  • 33. Zhang Y Liu D Chen X Li J Li L Bian Z et al. Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell. 2010; 39:133-44.

  • 34. Rainer J Ploner C Jesacher S Ploner A Eduardoff M Mansha M et al Glucocorticoid-regulated microRNAs and mirtrons in acute lymphoblastic leukemia. Leukemia. 2009; 23:746-52.

  • 35. Havens MA Reich AA Duelli DM Hastings ML. Biogenesis of mammalian microRNAs by a noncanonical processing pathway. Nucleic Acids Res. 2012. [Epub ahead of print]

  • 36. Ender C Krek A Friedl­nder MR Beitzinger M Weinmann L Chen W et al. A human snoRNA with microRNA-like functions. Mol Cell. 2008; 32:519-28.

  • 37. Kawahara Y Mieda-Sato A. TDP-43 promotes microRNA biogenesis as a component of the Drosha and Dicer complexes. Proc Natl Acad Sci U S A 2012; 109:3347-52.

  • 38. Sakamoto S Aoki K Higuchi T Todaka H Morisawa K Tamaki N et al. The NF90-NF45 complex functions as a negative regulator in the microRNA processing pathway. Mol Cell Biol. 2009; 29:3754-69.

  • 39. Michlewski G C­ceres JF. Antagonistic role of hnRNP A1 and KSRP in the regulation of let-7a biogenesis. Nat Struct Mol Biol. 2010; 17:1011-8.

  • 40. Pan L Gong Z Zhong Z Dong Z Liu Q Le Y et al. Lin-28 reactivation is required for let-7 repression and proliferation in human small cell lung cancer cells. Mol Cell Biochem. 2011; 355:257-63.

  • 41. Filipowicz W Bhattacharyya SN Sonenberg N. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev Genet. 2008; 9:102-14.

  • 42. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136:215-33.

  • 43. Schwarz DS Hutv­gner G Du T Xu Z Aronin N PD. Z. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2003; 115:199-208.

  • 44. Xiao C Rajewsky K. MicroRNA control in the immune system: basic principles. Cell. 2009; 136:26-36.

  • 45. Vasudevan S Steitz JA. AU-rich-element-mediated upregulation of translation by FXR1 and Argonaute2. Cell. 2007; 128:1105-18.

  • 46. Vasudevan S Tong Y Steitz JA. Switching from repression to activation: microRNAs can up-regulate translation. Science. 2007; 318:1931-4.

  • 47. Wang Y Liang Y Lu Q. MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet. 2008; 74:307-15.

  • 48. Yekta S Shih I. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004; 304:594-6.

  • 49. Gregory RI Chendrimada TP Cooch N Shiekhattar R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell. 2005; 123:631-40.

  • 50. Grosshans H Slack FJ. Micro-RNAs: small is plentiful. J Cell Biol. 2002; 156:17-21.

  • 51. Pauley KM Chan EKL. MicroRNAs and their emerging roles in immunology. Ann N Y Acad Sci. 2008; 1143:226-39.

  • 52. Flynt AS Lai EC. Biological principles of microRNAmediated regulation: shared themes amid diversity. Nat Rev Genet. 2008; 9:831-42.

  • 53. Fabbri M Garzon R Cimmino A Liu Z Zanesi N Callegari E et al. MicroRNA-29 family reverts aberrant methylation in lung cancer by targeting DNA methyltransferases 3A and 3B. Proceedings of the National Academy of Sciences. 2007; 104:15805-10.

  • 54. Zhao S Wang Y Liang Y Zhao M Long H Ding S et al. MicroRNA-126 regulates DNA methylation in CD4+ T cells and contributes to systemic lupus erythematosus by targeting DNA methyltransferase 1. Arthritis Rheum. 2011; 63:1376-86.

  • 55. Gibbings DJ Ciaudo C Erhardt M Voinnet O. Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity. Nat Cell Biol. 2009; 11:1143-9.

  • 56. Lagos-Quintana M Rauhut R Yalcin A Meyer J Lendeckel W Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002; 12:735-9.

  • 57. Williams AE Moschos SA Perry MM Barnes PJ Lindsay MA. Maternally imprinted microRNAs are differentially expressed during mouse and human lung development. Dev Dyn. 2007; 236:572-80.

  • 58. Babak T Zhang W Morris Q Blencowe BJ Hughes TR. Probing microRNAs with microarrays: tissue specificity and functional inference. RNA. 2004; 10: 1813-9.

  • 59. Sempere LF Freemantle S Pitha-Rowe I Moss E Dmitrovsky E Ambros V. Expression profiling of mammalian microRNAs uncovers a subset of brain expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol. 2004; 5:R13.

  • 60. Polikepahad S Knight JM Naghavi AO Oplt T Creighton CJ Shaw C et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010; 285:30139-49.

  • 61. Wang Y Weng T Gou D Chen Z Chintagari N Liu L. Identification of rat lung-specific microRNAs by microRNA microarray: valuable discoveries for the facilitation of lung research. BMC Genomics. 2007; 8:29.

  • 62. Lu TX Munitz A Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009; 182: 4994-5002.

  • 63. Xie C Huang H Sun X Guo Y Hamblin M Ritchie RP et al. MicroRNA-1 regulates smooth muscle cell differentiation by repressing Kruppel-like factor 4. Stem Cells Dev. 2010; 20:205-10.

  • 64. Liu G Friggeri A Yang Y Milosevic J Ding Q Thannickal VJ et al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J Exp Med. 2010; 207:1589-97.

  • 65. Garbacki N Di Valentin E Geurts P Irrthum A Crahay C Arnould T et al. MicroRNAs profiling in murine models of acute and chronic asthma: a relationship with mRNAs targets. PLoS ONE. 2011; 6:e16509.

  • 66. Goncharova EA Lim PN Chisolm A Fogle HW Taylor JH Goncharov DA et al. Interferons modulate mitogen-induced protein synthesis in airway smooth muscle. Am J Physiol Lung Cell Mol Physiol. 2010; 299:L25-35.

  • 67. Halayko AJ Camoretti-Mercado B Forsythe SM Vieira JE Mitchell RW Wylam ME et al. Divergent differentiation paths in airway smooth muscle culture: induction of functionally contractile myocytes. Am J Physiol Lung Cell Mol Physiol. 1999; 276:L197-206.

  • 68. Halayko AJ Salari H MA X Stephens NL. Markers of airway smooth muscle cell phenotype. Am J Physiol Lung Cell Mol Physiol. 1996; 270:L1040-51.

  • 69. Benayoun L Druilhe A Dombret MC Aubier M M. P. Airway structural alterations selectively associated to severe asthma. Respir Res. 2003; 167: 1360-8.

  • 70. Bowers CW Dahm LM. Maintenance of contractility in dissociated smooth muscle: low-density cultures in a defined medium. Am J Physiol. 1993; 264:C229-36.

  • 71. Ma X Li W Stephens NL. Detection of two clusters of mechanical properties of smooth muscle along the airway tree. J Appl Physiol. 1996; 80:857-61.

  • 72. Ma X Cheng Z Kong H Wang Y Unruh H Stephens NL et al. Changes in biophysical and biochemical properties of single bronchial smooth muscle cells from asthmatic subjects. Am J Physiol Lung Cell Mol Physiol. 2002; 283:L1181.

  • 73. Hirst S. Airway smooth muscle cell culture: application to studies of airway wall remodelling and phenotype plasticity in asthma. Eur Respir J. 1996; 9:808-20.

  • 74. Halayko AJ Stephens NL. Potential role for phenotypic modulation of bronchial smooth muscle cells in chronic asthma. Can J Physiol Pharmacol. 1994; 72: 1448-57.

  • 75. Halayko A Tran T Ji S Yamasaki A Gosens R. Airway smooth muscle phenotype and function: interactions with current asthma therapies. Curr Drug Targets. 2006; 7:525-40.

  • 76. Johnson SR Knox AJ. Synthetic functions of airway smooth muscle in asthma. Trends Pharmacol Sci. 1997; 18:288-92.

  • 77. Dekkers BGJ Schaafsma D Nelemans SA Zaagsma J Meurs H. Extracellular matrix proteins differentially regulate airway smooth muscle phenotype and function. Am J Physiol Lung Cell Mol Physiol. 2007; 292:L1405-L13.

  • 78. Hirst SJ Twort CHC Lee TH. Differential effects of extracellular matrix proteins on human airway smooth muscle cell proliferation and phenotype. Am J Respir Cell Mol Biol. 2000; 23:335-44.

  • 79. Mitchell RW Halayko AJ Kahraman S Solway J Wylam ME. Selective restoration of calcium coupling to muscarinic M3 receptors in contractile cultured airway myocytes. Am J Physiol Lung Cell Mol Physiol.2000; 278:L1091-100.

  • 80. Gosens R Meurs H Bromhaar MMG McKay S Nelemans SA Zaagsma J. Functional characterization of serum and growth factor induced phenotypic changes in intact bovine tracheal smooth muscle. Br J Pharmacol. 2002; 137:459-66.

  • 81. Lé­guillette R Laviolette M Bergeron C Zitouni N Kogut P Solway J et al. Myosin Transgelin and Myosin Light Chain Kinase. Am J Respir Crit Care Med. 2009; 179:194-204.

  • 82. Chiba Y Ueno A Shinozaki K Takeyama H Nakazawa S Sakai H et al. Involvement of RhoA-mediated Ca2+ sensitization in antigen-induced bronchial smooth muscle hyperresponsiveness in mice. Respir Res. 2005;6.

  • 83. Chiba Y Takada Y Miyamoto S MitsuiSaito M Karaki H Misawa M. Augmented acetylcholine induced Rho-mediated Ca2+ sensitization of bronchial smooth muscle contraction in antigen-induced airway hyperresponsive rats. Br J Pharmacol. 1999; 127: 597-600.

  • 84. Chang Y Al-Alwan L Risse PA Roussel L Rousseau S Halayko AJ et al. TH17 cytokines induce human airway smooth muscle cell migration. J Allergy Clin Immunol. 2011; 186:4156-63.

  • 85. Marthan R Crevel H Guenard H Savineau JP. Responsiveness to histamine in human sensitized airway smooth muscle. Respir Physiol. 1992; 90: 239-50.

  • 86. Labont­ I Hassan M Risse PA Tsuchiya K Laviolette M Lauzon AM et al. The effects of repeated allergen challenge on airway smooth muscle structural and molecular remodeling in a rat model of allergic asthma. Am J Physiol Lung Cell Mol Physiol. 2009; 297:L698-705.

  • 87. Broide D Lotz M Cuomo A Coburn D Federman E Wasserman S. Cytokines in symptomatic asthma airways. J Allergy Clin Immunol. 1992; 89:958-67.

  • 88. Mattoli S Mattoso VL Soloperto M Allegra L Fasoli A. Cellular and biochemical characteristics of bronchoalveolar lavage fluid in symptomatic nonallergic asthma. J Allergy Clin Immunol. 1991; 87: 794-802.

  • 89. Kuhn AR Schlauch K Lao R Halayko AJ Gerthoffer WT Singer CA. MicroRNA expression in human airway smooth muscle cells: role of miR-25 in regulation of airway smooth muscle phenotype. Am J Respir Cell Mol Biol. 2010; 42:506-13.

  • 90. Mohamed JS Lopez MA Boriek AM. Mechanical Stretch Up-regulates MicroRNA-26a and Induces Human Airway Smooth Muscle Hypertrophy by Suppressing Glycogen Synthase Kinase-3­ J Biol Chem. 2010; 285:29336-47.

  • 91. Mohamed JS Hajira A Li Z Paulin D Boriek AM. Early growth responsive protein-1 induces desmin null airway smooth muscle hypertrophy through MicroRNA-26a. J Biol Chem. 2011; 286:43394-404.

  • 92. Leeper NJ Raiesdana A Kojima Y Chun HJ Azuma J Maegdefessel L et al. MicroRNA-26a is a novel regulator of vascular smooth muscle cell function. J Cell Physiol. 2011; 226:1035-43.

  • 93. Chiba Y Tanabe M Goto K Sakai H Misawa M. Down-regulation of miR-133a contributes to upregulation of Rhoa in bronchial smooth muscle cells. Am J Respir Crit Care Med. 2009; 180:713-9.

  • 94. van Rooij E Marshall WS Olson EN. Toward microRNA-based therapeutics for heart disease: the sense in antisense. Circ Res. 2008; 103:919-28.

  • 95. Williams AE Larner-Svensson H Perry MM Campbell GA Herrick SE Adcock IM et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS ONE. 2009; 4:e5889.

  • 96. Moschos S Williams A Perry M Birrell M Belvisi M Lindsay M. Expression profiling in vivo demonstrates rapid changes in lung microRNA levels following lipopolysaccharide-induced inflammation but not in the anti-inflammatory action of glucocorticoids. BMC Genomics. 2007; 8:240.

  • 97. Franco-Zorrilla JM Valli A Todesco M Mateos I Puga MI Rubio-Somoza I Leyva A Weigel D Garc­a JA Paz-Ares J. Target mimicry provides a new mechanism for regulation of microRNA activity. Nat Genet. 2007; 39:1033-7.

  • 98. Kr­tzfeldt J Rajewsky N Braich R Rajeev KG Tuschl T Manoharan M Stoffel M. Silencing of microRNAs in vivo with ‘antagomirs’. Nature. 2005; 438:685-9.

  • 99. Simon HU Seelbach H Ehmann R Schmitz M. Clinical and immunological effects of low-dose IFN-alpha treatment in patients with corticosteroid-resistant asthma. Allergy. 2003; 58:1250-5.

  • 100. Collison A Mattes J Plank M Foster PS. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011; 128:160-7e4.

Search
Journal information
Impact Factor
IMPACT FACTOR 2018: 0.2
5-year IMPACT FACTOR: 0.293

CiteScore 2018: 0.30

SCImago Journal Rank (SJR) 2018: 0.172
Source Normalized Impact per Paper (SNIP) 2018: 0.237

Metrics
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 147 36 1
PDF Downloads 54 12 1