Open Access

Brief communication (Original). Preparation of a novel porous scaffold from poly(lactic-co-glycolic acid)/hydroxyapatite


Cite

Background: Scaffolds for bone tissue engineering must meet functional requirements, porosity, biocompatibility, and biodegradability. Different polymeric scaffolds have been designed to satisfy these properties. Composite materials could improve mechanical properties compared with polymers, and structural integrity and flexibility compared with brittle ceramics.

Objective: Fabricate poly (lactic-co-glycolic acid) (PLGA) /hydroxyapatite (HA) porous scaffolds by freezeextraction method, and evaluate the possibility for optimizing their biocompatibility by changing their HA content.

Methods: Porous PLGA/HA composites structure were prepared by freezing a polymer solution, and then the solvent was extracted by a non-solvent and subsequently air-dried. The scaffolds were coated with triblock copolymer and sterilized by ultraviolet light. Human mesenchymal stem cells were cultured on the prepared scaffolds and were studied after three days by 4, 6-diamidino-2-phenylindole (DAPI) fluorescence microscopy.

Results: Microstructural studies with SEM showed the formation of about 50 micrometer size porous structure and interconnected porosity so that cells were adhered well into the structure of the coated samples. DAPI fluorescence microscopy showed more cell adhesion to the coated scaffolds and cell diffusion into the pores are visible. Direct assay of cell proliferation performed with MTT test showed cell growing on the scaffold similar to or more than on control samples.

Conclusion: The triblock-coated PLGA/HA porous scaffolds may provide cell adhesion and proliferation, demonstrating their potential application in bone engineering.

eISSN:
1875-855X
Language:
English
Publication timeframe:
6 times per year
Journal Subjects:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine