Search Results

1 - 10 of 195 items :

  • woven fabrics x
Clear All

References [1] Badawi, S. S. (2007). Development of the weaving machine and 3D woven spacer fabric structures for lightweight composites materials. PhD Thesis, Technical University of Dresden, Dresden, Germany. [2] Unal, P. G. (2012). 3D woven fabrics. In: Jeon, H. Y. (Ed.). Woven fabrics. Rijeka, InTech 91-120. [3] Matusiak, M., Sikorski, K., Wilk, E. (2012). Innovative woven fabrics for therapeutic clothing. In: Bartkowiak, G., Frydrych, I., Pawłowa, M. (Eds.), Innovations in textile materials & protective clothing. Warsaw, CIOP-PIB,. 89-106. [4] Gandhi, K

References [1] Matusiak M.: Thermal Insulation of Woven Fabric for Clothing. Monograph, Works of Textile Research Institute, Special Edition, Lodz 2011, ISBN 978-83-911544-7-2. [2] [3] Andrysiak J., Sikorski K., Wilk E., Matusiak M., Investigation of an Innovative “Cotton Hollow” Yarn, FIBRES & TEXTILES in Eastern Europe 2014; 22, 5(107), pp. 33-37. [4] Unal P.G., 3D Woven Fabrics, chapter in: Woven Fabrics edited by Han-Yong Jeon, In -Tech Croatia 2012, ISBN 978-953-51-0607-4, pp. 91-120 [5] Chen X

References [1] Textile Metrology IV (Metrologia Włókiennicza IV – in Polish) (1973). Szmelter, W. (ed). WNT (Warsaw). [2] Matusiak, M., Frącczak, Ł. (2015). Investigation of waviness of 3D woven fabrics. In: Frydrych, I., Bartkowaik, G., Pawłowa, M. (eds.). Innovations in clothing design, materials, technology and measurement methods. Lodz University of Technology (Lodz), 166-182. [3] Carr, W. W., Posey, J. E., Tincher, W. C. (2007). Frictional characteristics of apparel fabrics. Textile Research Journal, 59(3), 129-113. [4] Rossi, R. (2005). Interaction between

References [1] Rossi, R. (2005). Interaction between protection and thermal comfort. In: Scott, A. (Ed.). Textiles for Protection. Woodhead Publishing Ltd. (Cambridge, England). pp. 233-260. [2] Moorthy, R. R., Kandhavadivu, P. (2015). Surface friction characteristics of woven fabrics with nonconventional fibers and their blends. Journal of Textile and Apparel Technology and Management, 9(3), 1-14. [3] Carr, W. W., Posey, J. E., Tincher, W.C. (2007). Frictional characteristics of apparel fabrics. Textile Research Journal, 59(3), 129-136. [4] Mooneghi, S. A

Cloth Setting. Text. Mfr, 1931, 58, 3-4. [10] S. Brierley. Theory and Practice of Cloth Setting. Text. Mfr, 1931, 58, 47-49. [11] S. Brierley. Cloth Setting Reconsidered. Part I. Tex. Mfr, 152, 79, 349-351. [12] S. Brierley. CIOUl Setting Reconsidered. Part ll. Text. Mfr. 1952. 79, 431-433. [13] S. Brierley. Cloth Setting Reconsidered. Part III. Text. Mfr. L952, 79, 449-453. [14] S. Brierley. Cloth Setting Reconsidered. Part IV. Text. Mfr, L952, 79, 533-537. [15] H. Bogaty, G.H. Lourigan, and H.E. Hanis. Structural Compactness of Woven Wool Fabrics and their Behavior

Journal, 2007. 16(12): p. 807. [11] Grosberg, P., The mechanical properties of woven fabrics part ii: the bending of woven fabrics. Textile Research Journal, 1966. 36(3): p. 205-211. [12] Das, A. and S. Ishtiaque, Comfort characteristics of fabrics containing twist-less and hollow fibrous assemblies in weft. Journal of Textile and Apparel, Technology and Management, 2004. 3(4): p. 1-7. [13] Frydrych, I., G. Dziworska, and J. Bilska, Comparative analysis of the thermal insulation properties of fabrics made of natural and man-made cellulose fibres. Fibres and Textiles in

References [1] Matusiak M., Frączak Ł. (2015). Investigation of Waviness of 3D Woven Fabrics. In: Innovations in Clothing Design, Materials, Technology and Measurement Methods, ed. By I. Frydrych, G. Bartkowiak, M. Pawłowa, Lodz University of Technology, ISBN 978-83-7283-666-3, 166-182 [2] Gandhi K. (2012). Woven Textiles Principles, Technologies and Applications, 1st ed., Woodhead Publishing, New Delhi, 142-158 [3] The American Heritage Dictionary of the English Language: Fifth Edition (2015). Available from: < > 02.03.2016 [4] Kyame G

density lipoprotein from hyperlipemia plasma”, Applied Surface Science Vol.257 (17), pp 7521-7528. [11] Chen, Y., Tang, X., Chen, B.; Qiu, G., 2011, “Atmospheric Pressure Plasma Vapor Treatment of Thermo-sensitive Poly (N-isopropylacrylamide) and its Application to Textile Materials”, Journal of Fiber Bioengineering & Informatics 4:3, pp 285–290. [12] Yang, C., Sun, K., Liu, J., Wang, H., Cao, Y., 2010, “Zwitterionic sulfobetaine-modified non-woven fabric for blood filtration”, Polymer International, Vol.59 (9), pp 1296-1302. [13] Zuo, F., Tan, D. H., Wang, Z., Jeung, S

: subjective and objective measurement of thermal haptic perception of textiles - preliminary studies, The Journal of The Textile Institute, 107(4), 445-455. [4] Ahmad, S., Ahmad, F., Afzal, A., Rasheed, A., Mohsin, M., Ahmad, N. (2015). Effect of weave structure on thermo-physiological properties of cotton fabrics. AUTEX Research Journal, 15(1), 30-34. [5] Cybulska, M., Snycerski, M., Ornat, M. (2002). Qualitative Evaluation of protective fabrics. AUTEX Research Journal, 2(2), 69-77. [6] Laourine, E., Cherif, C. (2011). Characterisation of barrier properties of woven

]. In an e-textile, electricity is used to power the components comprising the smart textile system. Hence, an electrical circuit has to be composed. Various textile technologies can be applied, such as stitching or embroidering EC yarns between the components [ 3 ], but the interconnection can also already be a part of the product, e.g. by weaving or knitting. Making the interconnecting yarns part of the fabric results in a more solid connection with fewer fabrication steps. Figure 1 shows an example of a woven fabric with integrated stainless steel yarns. Figure 1