Search Results

You are looking at 1 - 10 of 300 items for :

  • wind turbines x
Clear All
Open access

Małgorzata Pawlaczyk-łuszczyńska, Adam Dudarewicz, Kamil Zaborowski, Małgorzata Zamojska-Daniszewska and Małgorzata Waszkowska

References 1. Bakker R.H., Pedersen E., van den Berg G.P., Stewart R.E., Lok W., Bouma J. (2012), Impact of wind turbine sound on annoyance, self-reported sleep disturbances and psychological distress, Science of the Total Environment, 425, 42-45. 2. Directive 2002/49/EC of the European Parliament and of the Council of 25 June 2002 relating to the assessment and management of environmental noise, Official Journal of the European Communities, 2002, L 189/12. 3. ISO, International Standard ISO 226: Acoustics - Normal equal-loudness-level contours, Geneva

Open access

Honorata Hafke-Dys, Anna Preis, Tomasz Kaczmarek, Adam Biniakowski and Paweł Kleka

References 1. ANSI Specifications for Audiometers, American National Standards Institute, New York, ANSI S3, 1996; 6-1996. 2. Bakker R., Pedersen E., van den Berg G., Stewart R., Lok W., Bouma J. (2012), Impact of wind turbine sound on annoyance, self-reported sleep disturbance and psychological distress, Sci. Total. Environ., 425, 42-51. 3. Berglund B., Berglund U., Lindvall T. (1976), Scaling loudness, noisiness, and annoyance of community noises, J. Acoust. Soc. Am., 60, 1119-1126. 4. Berglund

Open access

Krzysztof Rogowski, Ryszard Maroński and Janusz Piechna

References [1] B.F. Blackwell. The vertical-axis wind turbine “How it works”. Energy Report, SLA-74-0160, Sandia Laboratories, 1974. [2] K. Jankowski. Vertical axis turbine of Darrieus h-type with variable blade incidence angle concept design . M.Sc. Thesis, Warsaw University of Technology, Poland, 2009. [3] I. Paraschivoiu. Wind Turbine Design: With Emphasis on Darrieus Concept . Polytechnic International Press, Canada, 2002. [4] I. Paraschivoiu, O. Trifu, and Saeed F. H-Darrieus wind turbine with blade pitch control. International

Open access

Radosław Zimroz, Jacek Urbanek, Tomasz Barszcz, Walter Bartelmus, Fabien Millioz and Nadine Martin

. Mechanical Systems and Signal Processing , 23, 1724-1749. Baydar, N., Ball, A. (2002). Detection of gear deterioration under varying load conditions by using the instantaneous power spectrum. Mechanical Systems and Signal Processing , 14(6), 907-921. Urbanek, J., Barszcz, T., Sawalhi, N., Randall, R. B. (2011). Comparison of amplitude based and phase based methods for speed tracking in application to wind turbines. Metrology and Measurement Systems , 18(2), 295-304. Barszcz, T. Randall, R. B

Open access

Roberto Quintal-Palomo, Mateusz Dybkowski and Maciej Gwoździewicz

References [1] MALINOWSKI M., MILCZAREK A., KOT R., GORYCA Z., SZUSTER J.T., Optimized Energy-Conversion Systems for Small Wind Turbines: Renewable energy sources in modern distributed power generation systems, IEEE Power Electronics Magazine, Sept. 2015, 2, 3, 16-30. [2] WANG Y., XU L., Peak Power Improvement of Interior Permanent Motor for Electrified Vehicles, IEEE Electrification Magazine, June 2014, 2, 2, 25-30. [3] EL-REFAIE A.M., Motors/generators for traction/propulsion applications: A review, IEEE

Open access

Jacek Urbanek, Tomasz Barszcz, Nader Sawalhi and Robert Randall

Comparison of Amplitude-Based and Phase-Based Methods for Speed Tracking in Application to Wind Turbines

Focus of the vibration expert community shifts more and more towards diagnosing machines subjected to varying rotational speeds and loads. Such machines require order analysis for proper fault detection and identification. In many cases phase markers (tachometers, encoders, etc) are used to help performing the resampling of the vibration signals to remove the speed fluctuations and smearing from the spectrum (order tracking). However, not all machines have the facility to install speed tracking sensors, due to design or cost reasons, and the signal itself has to then be used to extract this information. This paper is focused on the problem of speed tracking in wind turbines, which represent typical situations for speed and load variation. The basic design of a wind turbine is presented. Two main types of speed control i.e. stall and pitch control are presented,. The authors have investigated two methods of speed tracking, using information from the signal (without relying on a speed signal). One method is based on extracting a reference signal to use as a tachometer, while the other is phase-based (phase demodulation). Both methods are presented and applied to the vibration data from real wind turbines. The results are compared with each other and with the actual speed data.

Open access

A. Sokolovs, L. Grigans, E. Kamolins and J. Voitkans

References 1. Kana, C. L., Thamodharan, M., & Wolf, A. (2001). System management of a windenergy converter. IEEE Transactions on Power Electronics, 16(3), 375-381. doi:10.1109/63.923770 2. Lu, H.-C., & Chang-Chien, L.-R. (2010). Use of wind turbine emulator for the WECS development. In: International Power Electronics Conference (IPEC), (pp. 3188-3195). 3. Monfared, M., Madadi Kojabadi, H., & Rastegar, H. (2008). Static and dynamic wind turbine simulator using a converter controlled dc motor. Renewable Energy

Open access

Maciej Kłaczyński and Tadeusz Wszołek

References 1. Boczar T. (2008), Wind energy. Current possibilities of using [in Polish: Energetyka wiatrowa. Aktualne możliwości wykorzystania], Warszawa, Wyd. PAK. 2. Borucki S., Boczar T., Cichoń A. (2011), Technical Possibilities of Reducing the Sound Pressure Level Emitted into the Environment by a Power Transformer, Archives of Acoustics, 36, 1, 49-56. 3. Fegeant O. (1999), On the masking of wind turbine noise by ambient noise, European Wind Energy Conference, Nice, France, 184-188. 4. Golec M., Golec Z., Cempel Cz. (2006), Noise of wind power

Open access

Hyunkyoung Shin, Pham Thanh Dam, Kwang Jin Jung, inseob Song, Chaewhan Rim and Taeyoung Chung

References Bulder, B., van Hees, M.T.h., Henderson, A.R., Huijsmans, R.H.M., Pierik, J.T.G., Snijders, E.J.B., Wijnants, G.H. and Wolf, M.J., 2002. Study to feasibility of and boundary conditions for floating offshore wind turbines. ECN, MARIN, TNO, TUD, MSC, Lagerway the Windmaster. Jensen, J.J., Olsen, A.S. and Mansour, A.E., 2011. Extreme wave and wind response predictions. Ocean Engineering, 38 (17-18), pp.2244-2253. Jonkman, J., Butterfield, S., Musial, W. and Scott, G., 2009. Definition of a 5-MW reference

Open access

Istvan Erlich, Fekadu Shewarega and Oliver Scheufeld

References Feltes, C.; Wrede, H. & Erlich, I., "Dynamic Behaviour of DFIG-Based Wind Turbines During Grid Faults", IEEJ Transactions on Industry Applications, 2008 Vol. 128 No. 4 pp. 396-401 P. Ledesma, J. Usaola, "Doubly Fed Induction Generator Model for Transient Stability Analysis", IEEE Trans. on Energy Conversion , vol. 20, pp. 388-397, Jun. 2005. J. B. Ekanayake, L. Holdsworth, X. G. Wu, N. Jenkins, "Dynamic Modeling of Doubly Fed Induction Generator Wind Turbines", IEEE