Search Results

You are looking at 1 - 10 of 401 items for :

  • viscoelasticity x
Clear All
Open access

Anayansi Escalante-Aburto, Juan de Dios Figueroa-Cárdenas, José Juan Véles-Medina, Néstor Ponce-García, Zorba Josué Hernández-Estrada, Patricia Rayas-Duarte and Senay Simsek

., 2016. Viscoelastic properties of tablets from Osborne solubility fraction, pentosans and flour and bread using relaxation tests. J. Cereal Science, 69, 207-212. Figueroa J.D.C., Hernández Z.J.E., Véles M.J.J., Rayas-Duarte P., Martínez-Flores H.E., and Ponce-García N., 2011. Evaluation of degree of elasticity and other mechanical properties of wheat kernels. Cereal Chemistry, 88, 12-18. Figueroa J.D.C., Maucher T., Reule W., and Peña, R.J., 2009. Influence of high molecular weight glutenins on viscoelastic properties of intact wheat kernel and relation

Open access

Mehdi Koohmishi

References Chen, Y. (2009) Viscoelastic modeling of flexible pavement . A dissertation presented to the graduate faculty of the University of Akron. Cho, Y. H., McCullough, B. F. , Weissmann, J. (1996) Considerations on finite-element method application in pavement structural analysis . Journal of the Transportation Research Board, 1539, 1996, pp. 96-101. Duncan, J. M., Monismith, C. L., Wilson, E. L. (1968) Finite element analyses of pavements . Transportation Research Record. 228, Transportation

Open access

Marek Pawlikowski

-46. Skalski K., Pawlikowski M., Suchocki C.: Constitutive equations and bone functional adaptation ([in Polish]: Równania konstytutywne I adaptacja funkcjonalna kości), Technical Mechanics v. XII, Biomechanics, Polish Academy of Sciences, 517-614, 2011. Carter D. R., Hayes W. C.: The compressive behavior of bone as a two-phase porous structure. J Bone Joint Surg [Am], 1977, 59:954-62. Linde F.: Elastic and viscoelastic properties of trabecular bone by a compression testing approach., Dan Med Bull., 1994, 41

Open access

Sandra Carillo, Michel Chipot, Vanda Valente and Giorgio Vergara Caffarelli

References 1. G. Amendola, S. Carillo and A. Manes, Classical free energies of a heat conductor with memory and the minimum free energy for its discrete spectrum model, Bollettino U. M.l., sect. B , vol.3, pp. 421-446, 2010. 2. G. Amendola, S. Carillo, J.M. Golden and A. Manes, Viscoelastic fluids: free energies, differential problems and asymptotic behaviour, Discrete and Continuous Dynamical Systems - Series B , vol. 19, pp.1815-1835, 2014. 3. M. Bertsch, P. Podio-Guidugli and V. Valente, On the dynamics of deformable ferromagnets, I. Global

Open access

Tsviatko V. Rangelov, Petia S. Dineva and George D. Manolis

R eferences [1] G urtin , M. E., A. I. M urdoch . A Continuum Theory of Elastic Material Surfaces. Arch. Ration. Mach. Anal. , 57 (1975), 291-323. [2] S chanz , M. Wave Propagation in Viscoelastic and Poroelastic Continua: A Boundary Element Approach, Lecture Notes in Applied Mechanics, Vol. 2, Springer, Berlin, 2001. [3] B oltzmann , L. Theorie der elastischen nachwirkungen. Sitzungsbericht der Akademie der Wissenschaften (Wien): Mathematisch-Naturwissenschaftlichen Klasse , 70 (1874), No. 2 , 275-300. [4] M eyer , O. E. Theorie

Open access

Merab Beraia, Fridon Todua and Irina Khomeriki

. Lakes RS. Viscoelastic materials. Cambrige: University Press; 2009. Ross R. Atherosclerosis - An inflammatory disease. N Engl J Med. 1999; 340(2): 115-126. Pedley TJ. The fluid mechanics of large blood vessels. Cambridge: University Press; 1980.

Open access

Amel Atallah-Baraket and Maryem Trabelsi

References [1] S. Alinhac, P. Gérard, Opérateurs pseudo-differentiels et théoréme de Nash-Moser, Inter Éditions du CNRS, Meudon, France, 1991. [2] A. Atallah-Baraket, C. Fermanian Kammerer, High frequency analysis of solutions to the equation of viscoelasticity of Kelvin-Voight, J. Hyperbolic. Differ. Equ. 1 (2004), 789-812. [3] M.A. Ayadi, A. Bchatnia, M. Hamouda, S. Messaoudi, General decay in a Timoshenko-type system with thermoelasticity with second sound, Adv. Nonlinear Anal. 4 (2015), 263

Open access

Thomas S. Brown, Shukai Du, Hasan Eruslu and Francisco-Javier Sayas

1 Introduction This paper offers a thorough introduction to mathematical tools to describe wave propagation in solids modeled with a wide collection of viscoelastic laws. Before we even attempt a general description of the models we will be addressing, let us emphasize what our goals are and what has not been tackled in the present paper. We aim for a unified mathematical description of a wide collection of known viscoelastic models, including basic well-posedness results. The models will include all classical viscoelastic wave models, fractional versions

Open access

Jozef Sumec and Mária Minárová

References [1] BENČA, J. - KOSACZKÝ, E.: Foundations of Modeling Theory. /In Slovak/ Publ. House VEDA, Bratislava 1981. [2] BOLTZMANN, L.: Zur Theorie der elastischen Nachwirkung Sitzber. Acad. Wiss. Wien 70. S. 275 - 306. Wiss. Abhand. 1. S 616 - 639, 1874. [3] [BRILLA, J.: Linear Viscoelastic Bending of Anisotropic Plates. ZAMM, Sonderheft, Vol. 48, No. 10, 1968, pp 650 - 662. [4] BRILLA, J.: Viscoelastic Bending of Anisotropic Plates. /In Slovak/ Bulding Journal, ÚSTARCH SAV, 3, VII

Open access

Paweł Ptaszek, Marcin Łukasiewicz, Anna Ptaszek and Mirosław Grzesik

thickeners and the clinical implications for dysphagia therapy. Dysphagia , 21, 264-269. DOI: 10.1007/s00455-006-9050-7. Dzuy Nguyen Q., Jensen C.T.B., Kristensen P.G., 1998. Experimental and modelling studies of the flow properties of maize and waxy maize starch pastes. Chem. Eng. J. , 70, 165-171. DOI: 10.1016/S1385-8947(98)00081-3. Eliasson A.C., 2004. Starch in food: Structure, function and applications . Woodhead Publishing, Cambrigde. Ferry J.D., 1980. Viscoelastic Properties of Polymers . Wiley, New York