Search Results

You are looking at 1 - 10 of 105 items for :

  • traffic parameters measurement x
Clear All
Open access

Piotr Burnos, Janusz Gajda, Zbigniew Marszałek, Piotr Piwowar, Ryszard Sroka, Marek Stencel and Tadeusz Żegleń

). Accuracy analysis of WIM systems calibrated using pre-weighed vehicles method. Metrology and Measurement Systems , 14(4), 517-527. Gajda, J., Sroka, R., Stencel, M., Żegleń, T. (1997). Measurement of Road Traffic Parameters Using an Inductive Single-Loop Detector. 9th International Symposium on Electrical Instruments in Industry. Glasgow. Ritchie, S., Sun, C. (1999). Individual Vehicle Speed Estimation Using Single Loop Inductive Waveforms. Call No: UCB-ITS-PWP-99-14. California PATH Working Paper, California

Open access

Zbigniew Marszałek, Ryszard Sroka and Marek Stencel

). Sroka, R. (2002). Multisensing in road traffic measurements. Multisensor Fusion. Kluwer Academic Publisher. NATO Science Series-Mathematics. Physics and Chemistry, 70, 715-747. Gajda, J., Stencel, M. (1997). Determination of Road Vehicle Types Using an Inductive Loop Detector. Proceedings of XIV IMEKO Congress. Tampere. Finland, 231-236. Ki, Y. K., Baik, D. K. (2006). Vehicle Classification Algorithm for Loop Detectors using Neural Network. IEEE Transactions on Vehicular Technology , 55(6), 1704

Open access

Elżbieta Walerian, Ryszard Janczur, Mieczysław Czechowicz and Yulija Smyrnova

-172. Walerian E., Janczur R., Czechowicz M. (1999b), Applications of the road traffic noise model to urban systems , Archives of Acoustics, 24 , 2, 145-160. Walerian E., Janczur R., Czechowicz M. (2001a), Sound levels forecasting for city-centers. Part I: Sound level due to a road within urban canyon , Applied Acoustics, 62 , 359-350. Walerian E., Janczur R., Czechowicz M. (2001b), Sound levels forecasting for city-centers. Part II: Effect of source model parameters on sound level in built-up area , Applied Acoustics

Open access

M. Spławińska

R eferences 1. A. Olma, Określenie współczynników przeliczeniowych do szacowania natężeń ruchu drogowego w obszarach miejskich, Praca doktorska, Politechnika Śląska, Gliwice 2005 2. Ruch Drogowy 2010, Transprojekt - Warszawa Sp. z o.o. 3. AASHTO Guidelines for Traffic Data Programs, American Association of State Highway and Transportation Officials, 1992. 4. Federal Highway Administration (FHWA), Traffic Monitoring Guide, 2013. 5. L. Jin, Ch. Xu, J. D. Fricker, Comparison of Annual Average Daily Traffic Estimates: Traditional Factor

Open access

Valentin Petrescu, Rodica Ciudin, Claudiu Isarie, Lucian Ionel Cioca and Victor Nederita

-1434. Foraster M., Deltell A., Basagana X., Medina-Ramo M., Aguilera I., Bouso L., Grau M., Phuleria H.C., Rivera M., Slama R., Sunyer J., Targa J., & Kunzli N., 2011. Local determinants of road traffic noise levels versus determinants of air pollution levels in a Mediterranean city . Environmental Research, 111, 177–183. Gibbs D., Iwasaki R., Bernhard R., Bledsoe J., Carlson D., Corbisier C., Fults K., Hearne T. Jr., McMullen K., Newcomb D., Roberts J., Rochat J., Scofield L., & Swanlund M., 2005, Quiet Pavement Systems in Europe Publication No. FHWA-PL-05-011HPIP/05

Open access

M. Spławińska

R eferences 1. AASHTO Guidelines for Traffic Data Programs, American Association of State Highway and Transportation Officials, 1992 2. K. W. Axhausen, B. Jäggi, Ch.: DoblerBemessungsverkehrsstärken: Einneuer Ansatz. Forschungsprojekt VSS 2011/103 auf Antrag des SchweizerischenVerbands der Strassen und Verkehrsfachleute (VSS). Zürich, Juli 2015 3. P. H. Bellamy.: Seasonal Variations in Traffic Flows, Supplementary Report 437, prepared for the Department of the Environment and the Department of Transport, Prepared by Traffic Engineering

Open access

Michal Allman, Martin Jankovský, Valéria Messingerová and Zuzana Allmanová

References Bouwman, A. F., Germon, J. C., 1998: Special Issue - Soils and climate change - Introduction. Biology ana Fertility of Soils, 27:219. Burton, A. J., Zogg, G. P., Pregitzer, K. S., Zak, D. R., 1997: Effect of measurement CO2 concentration on sugar maple root respiration. Tree Physiology, 17:421-427. Davidson, E. A., Belk, E., Boone, R. D., 1998: Soil moisture and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest, Global Change Biolog., 4

Open access

Peter Kotek, Matúš Kováč and Martin Decký

parameters and surface deteriorations, 14-th International scientific conference VSU 2014, 5 - 6. June 2014, Sofia, Bulgaria, ISSN/ISBN: 1314-071X.

Open access

Ján Kortiš, Ľuboš Daniel, Matúš Farbák, Lukáš Maliar and Milan Škarupa

experimentally identified modal parameters. Engineering Structures, Vol. 123, 2016, pp. 354-371. [4] CHEN, G.W. - BESKHYROUN, S. - OMENZETTER, P.: Experimental investigation into amplitudedependent modal properties of an eleven-span motorway bridge. Engineering Structures, Vol. 107, 2016, pp. 80-100. [5] ARAÚJO, I. G. - LAIER, J. E.: Operational modal analysis using SVD of power spectral density transmissibility matrices. Mechanical Systems and Signal Processing, Vol. 46.1, 2014, pp. 129-145. [6] BRINCKER, R. - ZHANG, L

Open access

Peter Lukáč, Róbert Hudec, Miroslav Benčo, Zuzana Dubcová, Martina Zachariášová and Patrik Kamencay

The Evaluation Criterion for Color Image Segmentation Algorithms

Image segmentation is first and very important step in image analysis. The main idea of image segmentation is to simplify and change image into easier and meaningful form to analyze. Image segmentation is process, which locate objects in image. Many segmentation algorithms have been created for different applications. The algorithms are used in traffic applications, army applications, web applications, medical applications, studying and many others. In present time, do not exist restful objective methods to evaluate segmentation algorithms. This paper presents evaluation criterion based on measurement of precision of boundary segmentation. Moreover, the automatic segmentation algorithms in comparison with human segmentation results were tested. Four most used image segmentation algorithms, namely, Efficient graph based, K-means, Mean shift and Belief propagation are compared by designed criterion. The criterion computes three evaluation parameters like precision, recall and F 1 and the results are presented in the tables and graphs at the end of the paper.