Search Results

You are looking at 1 - 10 of 1,406 items for :

Clear All
Open access

P.H.A. Ngoc and C.T. Tinh

References [1] J. Baranowski and W. Mitkowski, “Stabilisation of LC ladder network with the help of delayed output feedback”, Control and Cybernetics 41, 13-34 (2012). [2] M. Buslowicz, “Robust stability of positive continuous-time linear systems with delays”, Int. J. Appl. Math. Comput. Sci. 20, 665-670 (2010). [3] A.Berman and R.J. Plemmons, Nonnegative Matrices in Mathematical Sciences, Acad. Press, New York, 1979. [4] Y.Y. Cao and J. Lam, “Computation of robust stability bounds for time-delay

Open access

Józef Duda

References Duda, J. (1986). Parametric Optimization Problem for Systems with Time Delay , Ph.D. thesis, AGH University of Science and Technology, Cracow. Duda, J. (1988). Parametric optimization of neutral linear system with respect to the general quadratic performance index, Archiwum Automatyki i Telemechaniki   33 (3): 448-456. Duda, J. (2010a). Lyapunov functional for a linear system with two delays, Control & Cybernetics   39 (3): 797-809. Duda, J

Open access

Marián Tárník, Ján Murgaš and Eva Miklovičová

Sciences, 24(1), (2014), 67-84. [4] J.M. LEMOS andM.S. BARAO: A control Lyapunov function approach to adaptive control of hiv-1 infection. Archives of Control Sciences, 22(3), (2012), 273-284. [5] T. LUDWIG, I. OTTINGER, M. TÁRNÍ K and E. MIKLOVIČOVÁ: T1DM subject as a time-delay system: Modeling and adaptive control. Proc. Int. Conf. on Process Control, ˇ Strbsk´e Pleso, Slovakia, (2013). [6] B. MIRKIN and P.-O. GUTMAN: Adaptive following of perturbed plants with input and state delays. Proc. 2011 9th IEEE Int. Conf. on

Open access

J. Duda

.L. Han, “On stability of linear neutral systems with mixed time delays: a discretised Lyapunov functional approach”, Automatica 41, 1209-1218 (2005). [5] Q.L. Han, “A discrete delay decomposition approach to stability of linear retarded and neutral systems”, Automatica 45, 517-524 (2009). [6] Q.L. Han, “Improved stability criteria and controller design for linear neutral systems”, Automatica 45, 1948-1952 (2009). [7] K. Gu and Y. Liu, “Lyapunov-Krasovskii functional for uniform stability of coupled differential

Open access

Józef Duda

with two delays and PDcontroller. Archives of Control Sciences, 23 (2013), 131-143. [5] V.L. KHARITONOV and A.P. ZHABKO: Lyapunov-Krasovskii approach to the robust stability analysis of time-delay systems. Automatica, 39 (2003), 15-20. [6] N. KRASOVSKII: On the application of the second method of Lyapunov for equations with time delay. Prikladnaya Matematika i Mekhanika, 20 (1956), 315-327, (in Russian). [7] Y.M. REPIN: Quadratic Lyapunov functionals for systems with delay. Prikladnaya Matematika i Mekhanika, 29 (1965

Open access

Vyacheslav Maksimov

. VSP, The Netherlands, 2002. J. Ackermann: Robust control, Control Engineering. Springer, 1993. Y.T. Chan, J.M. Riley and J.B. Plant: A parameter estimation approach to time-delay estimation and signal detection. IEEE Trans. Acoust. Speech and Signal Processing , ASSP-28 (1980), 8-15. A.E. Pearson and C.Y. Wuu: Decoupled delay estimation in the identification of differential delay systems. Automatica , 20 (1984), 761-772. M. Agarval and C. Canudas: On

Open access

Adam Kowalczyk, Robert Hanus and Anna Szlachta

References Bendat, J.S., Piersol, A.G. (2000). Random data - analysis and measurement procedures. John Wiley. New York. Bendat, J.S., Piersol, A.G. (1993). Engineering applications of correlation and spectral analysis. John Wiley. New York. Beck, M. S., Pląskowski, A. (1987). Cross-Correlation Flowmeters. Adam Hilger. Bristol. Blok, E. (2002). Classification and evaluation of discrete subsample time delay estimation algorithms. Proc. of 14th

Open access

Volodymyr Mosorov

REFERENCES [1] Bendat, J.S., Piersol, A.G. (2010). Random Data - Analysis and Measurement Procedures, Fourth Edition . Wiley. [2] Jacovitti, G., Scarano, G. (1993). Discrete time technique for time delay estimation. IEEE Transactions on Signal Processing , 41 (2), 525-533. [3] Hanus, R., Kowalczyk, A., Szlachta, A., Chorzępa, R. (2018). Application of conditional averaging to time delay estimation of random signals. Measurement Science Review , 18 (4), 130-137. [4] Hanus, R., Zych, M., Petryka, L., Świsulski, D. (2014). Time delay

Open access

Mai Viet Thuan, Vu Ngoc Phat and Hieu Trinh

References Baser, U. and Kizilsac, B. (2007). Dynamic output feedback H ∞ control problem for linear neutral systems, IEEE Transactions on Automatic Control 52 (6): 1113-1118. Blizorukova, M., Kappel, F. and Maksimov, V. (2001). A problem of robust control of a system with time delay, International Journal of Applied Mathematics and Computer Science 11 (4): 821-834. Botmart, T., Niamsup, P. and Phat, V.N. (2011). Delay-dependent exponential stabilization for uncertain linear systems with interval

Open access

Talar Sadalla, Dariusz Horla, Wojciech Giernacki and Piotr Kozierski

, no. 72 (2010). [4] Hafasi S., Laabidi K., Farkh R., Synthesis of a fractional PI controller for a first-order time delay system, Transactions of the Institute of Measurement and Control, vol. 35, no. 8, pp. 9972007 (2013). [5] Kaczorek T., Selected Problems of Fractional Systems Theory, Springer (2011). [6] Latawiec K.J., Łukaniszyn M., Stanisławski R., Advances in Modelling and Control of Non-integer Order Systems, 6th Conference on Non-integer Order Calculus and its Applications, Springer (2014). [7