Search Results

You are looking at 1 - 9 of 9 items for :

  • sum list coloring x
Clear All
Open access

Arnfried Kemnitz, Massimiliano Marangio and Margit Voigt

-Burchardt and A. Drzystek, General and acyclic sum-list-colouring of graphs , Appl. Anal. Discrete Math. 10 (2016) 479–500. doi:10.2298/AADM161011026D [5] E. Drgas-Burchardt and A. Drzystek, Acyclic sum-list-colouring of grids and other classes of graphs , Opuscula Math. 37 (2017) 535–556. doi:10.7494/OpMath.2017.37.4.535 [6] J. Harant and A. Kemnitz, Lower bounds on the sum choice number of a graph , Electron. Notes Discrete Math. 53 (2016) 421–431. doi:10.1016/j.endm.2016.05.036 [7] G. Isaak, Sum list coloring 2 × n arrays , Electron. J. Combin

Open access

Arnfried Kemnitz, Massimiliano Marangio and Margit Voigt

References [1] A. Berliner, U. Bostelmann, R.A. Brualdi and L. Deaett, Sum list coloring graphs, Graphs Combin. 22 (2006) 173-183. doi:10.1007/s00373-005-0645-9 [2] F. Harary, Graph Theory (Addison-Wesley, Reading, MA, 1969). [3] B. Heinold, Sum list coloring and choosability (Ph.D. Thesis, Lehigh University, 2006). [4] G. Isaak, Sum list coloring 2 × n arrays, Electron. J. Combin. 9 (2002) # N8. [5] G. Isaak, Sum list coloring block graphs, Graphs Combin. 20 (2004) 499-506. doi

Open access

Olivier Baudon, Julien Bensmail and Éric Sopena

.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness (W.H. Freeman, 1979). [6] M. Kalkowski and M. Karoński and F. Pfender, Vertex-coloring edge-weightings: Towards the 1-2-3 conjecture, J. Combin. Theory (B) 100 (2010) 347-349. doi:10.1016/j.jctb.2009.06.002 [7] T. Bartnicki, J. Grytczuk and S. Niwczyk, Weight choosability of graphs, J. Graph Theory 60 (2009) 242-256. doi:10.1002/jgt.20354 [8] M. Borowiecki, J. Grytczuk and M. Pilśniak, Coloring chip configurations on graphs and

Open access

Krzysztof Giaro and Marek Kubale

R eferences [1] J. Cardinal, V. Ravelomanana and M. Valencia-Pabon, Minimum sum edge colorings of multicycles , Discrete Appl. Math. 158 (2010) 1216–1223. doi:10.1016/j.dam.2009.04.020 [2] K. Giaro and M. Kubale, Efficient list cost coloring of vertices and/or edges of bounded cyclicity graphs , Discuss. Math. Graph Theory 29 (2009) 361–376. doi:10.7151/dmgt.1452 [3] K. Jansen, Complexity results for the optimum cost chromatic partition problem , Forschungsbericht, Trier University (1996) 96–41. [4] K. Jansen, The optimum cost

Open access

Izak Broere, Moroli D.V. Matsoha and Johannes Heidema

References [1] B.L. Bauslaugh, Core-like properties of infinite graphs and structures, Discrete Math. 138 (1995) 101-111. doi:10.1016/0012-365X(94)00191-K [2] B.L. Bauslaugh, Cores and compactness of infinite directed graphs, J. Combin. Theory Ser. B 68 (1996) 255-276. [3] B.L. Bauslaugh, List-Compactness of directed graphs, Graphs Combin. 17 (2001) 17-38. doi:10.1007/s003730170052 [4] M. Borowiecki, I. Broere, M. Frick, G. Semanišin and P. Mihók, A survey of hered- itary properties of graphs

Open access

Krasimira Petkova, Emil Molle, Gerhard Huber, Monika Konnert and Julian Gaviria

, Foken T (2008) Klimawandel in Bayern.Auswirkungen und An­passungsmöglichkeiten. Bayreuther Forum ökologie, 113. Ballian D, Jukić B, Balić B, Kajba D, von Wühlisch G (2015) Phenological variability of European beech (Fagus sylvatica L.) in the International provenance trial. Šumarski list, 11-12: 521-533. Charru M, Seynave I, Morneau F, Bontemps JD (2010) Recent changes in forest productivity: an analysis of national forest inventory data for common beech (Fagus sylvatica L.) in north-eastern France. Forest Ecology and Man­agement, 260

Open access

Fred-Johan Pettersen and Jan Olav Høgetveit

.000. Filter: Erode. Click Apply.The result should look like figure 13 . If the bone marrow mask is below the bone mask, drag the bone marrow mask onto the bone mask (it will now appear above the bone mask in the list). Fig. 13 Slice 12 of segmented bone and bone marrow. Note that it may be difficult to see that the colours of bone and bone marrow are different in grayscale prints. The Dilate operation above is there to make sure any holes in the bone are closed before the Flood Fill operation is performed. The following Close operation restores

Open access

Thomas S. Brown, Shukai Du, Hasan Eruslu and Francisco-Javier Sayas

of problems with data ( f , 0, 0), (0, α , 0), and (0, 0, β ). We follow the notation of Proposition 14 and define nine instances of spaces and operators to apply Corollary 18 : we list the spaces X and Y (before complexification), as well as the value of m and μ and the function φ in the estimate (30) . We separate the operator S( s ) in Proposition 14 as a sum of three operators S ( s ) = S f ( s ) + S α ( s ) + S β ( s ) . $$\begin{array}{} \displaystyle \mathrm S(s)=\mathrm S_f(s)+\mathrm S_\alpha(s)+\mathrm S_\beta(s). \end

Open access

Stephen Carley, Alan L. Porter, Ismael Rafols and Loet Leydesdorff

discipline ( van Leeuwen & Calero Medina, 2012 ). Another journal classification system in terms of fields and subfields has been made available by Elsevier’s Scopus in the meantime, but Wang and Waltman (2016) found it to be more problematic than WCs, in particular due to the high rate of multiple category assignments of a journal The field/subfield classification of Scopus is available in the journal list from http://www.elsevier.com/online-tools/scopus/content-overview . WCs are available (under subscription) at http://images.webofknowledge.com/WOKRS56B5/help