Search Results

You are looking at 1 - 10 of 1,925 items for :

  • stress field x
Clear All
Open access

K.B. Chavaraddi, V.B. Awati, M.M. Nandeppanavar and P.M. Gouder

hydrodynamics . – Z. Naturforsch, 57a, pp.955-960. [13] Chavaraddi K.B., Awati V.B. and Gouder P.M. (2013): Effect Boundary Roughness on Rayleigh-Taylor Instability of a Couple-Stress Fluid . – Gen. Math. Notes, vol.17, No.2, pp.66-75. [14] Srinivasan B., Dimonte G. and Tang X.-Z. (2012): Magnetic field generation in Rayleigh-Taylor unstable inertial confinement fusion plasmas . – Phys. Rev. Lett. 108, 165002. [15] Srinivasan B. and Tang X.-Z. (2012): Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement

Open access

Jean-Paul Bourdineaud, Maja Šrut, Anamaria Štambuk, Mirta Tkalec, Daniel Brèthes, Krešimir Malarić and Göran I .V. Klobučar

. Bioelectromagnetics 2008;29:605-14. doi: 10.1002/bem.20425 32. Blank M, Goodman R. Electromagnetic fields stress living cells. Pathophysiology 2009;16:71-8. doi: 10.1016/j.pathophys.2009.01.006 33. Rodríguez de la Fuente AO, Alcocer-González JM, Antonio Heredia-Rojas J, Balderas-Candanosa I, Rodríguez-Flores LE, Rodríguez-Padilla C, Taméz-Guerra RS. Effect of 60 Hz electromagnetic fields on the activity of hsp70 promoter: An in vitro study. Cell Biol Int 2009;33:419-23. doi: 10.1042/CBR20110010 34. Weisbrot D, Lin H, Ye L, Blank M

Open access

J. Borowiecka-Jamrozek and J. Lachowski

Diamond Review 51, 27-31 (1991). [8] J. Romanski, J. Lachowski, J. Konstant y, Diamond retention capacity - evaluation of stress field generated in a matrix by a diamond crystal, Industrial Diamond Review 66, 3, 43-45 (2006). [9] A. Romanski, J. Lachowski, Modelowanie stanu naprezeniodkształcenwspiekanych materiałach narzedziowych metaliczno-diamentowych, Rudyimetale niezelazne R52, 7, 402-409 (2007). [10] A. Romanski, J. Lachowski, Effect of friction coefficient on diamond retention capabilities in diamond impregnated

Open access

Hiroyuki Terada

References Hoeppner, D.W. (1978). Fatigue Testing of Weldments . American Society for Testing and Materials STP 648. Throop, J.F. & Reemsnyder, H.S. (1982). Residual Stress Effects in Fatigue . American Society for Testing and Materials STP 776. Nelson, D.V. (1982). Effects of Residual Stress on Fatigue Crack Propagation . American Society for Testing and Materials STP 776, (pp. 172 - 188). Parker, A.P. (1982). Discussion to ref (3) . American Society

Open access

Gian C. Rana

] V. Sharma and G.C. Rana, “Thermal instability of a Walters’ (model B′) elastico-viscous fluid in the presence of variable gravity field and rotation in porous medium”, J. Non-Equilib. Thermodyn. 26, 31-40 (2001). [11] G.C. Rana, V. Sharma, and S. Kumar, “Stability of incompressible Rivlin-Ericksen elastico-viscous superposed fluids in the presence of Uniform horizontal magnetic field in porous medium”, J. Appl. Math. and Fluid Mech. 2, 41-47 (2011). [12] V. Kumar, “Stability of stratified couple-stress dusty fluid in the presence of

Open access

C.B. Mehta and M. Singh

mixture having vertical temperature and concentration gradients with rotation. - Indian J. Pure Appl. Math., vol.30, No10, pp.991-1001. [12] Kumar P., Lal R. and Sharma P. (2004): Effect of rotation on thermal instability in couple-stress elastico-viscous fluid. - Z. Naturforsch., vol.59a, pp.407-411. [13] Sharma R.C. (1977): Thermal instability in compressible fluids in the presence of rotation and magnetic field. - J. Math. Anal. Appl., vol.60, pp.227-235. [14] Singh M. and Kumar P. (2011): Magneto and incompressible

Open access

Ihor Kuz, Olga Kuz and Heorgij Sulym

. Kuz O. ( 2005), Stress state of semi-plane with notch under uniform extension, Abstract of the Sixth Polish-Ukrainian Conference “Current problems of mechanics of nonhomogeneous media”, Warsaw, 76–77 (in Ukrainian). 5. Lazzarin P., Tovo R. (1996), A unified approach to the evaluation of linear elastic stress fields in the neibourhood of cracks or notches, International Journal of Fracture, 78, 3-19. 6. Muskhelishvili N.I. (2003), Some Basic Problems of the Mathematical Theory of Elasticity, Springer. 7. Panasiuk V. V., Savruk M. P

Open access

T.A. van Beek, J.W. Jansen and E.A. Lomonova

References [1] Wang P., Cavallini A., and Montanari G., The influence of impulsive voltage frequency on pd features in turn insulation of inverterfed motors. Electrical Insulation and Dielectric Phenomena (CEIDP), 2014 IEEE Conference on, pp. 35-38 (2014). [2] Strobl R., Haverkamp W., Malin G., Fitzgerald F., Evolution of stress control systems in medium voltage cable accessories. in Transmission and Distribution Conference and Exposition, IEEE/PES 2: 843-848 (2001). [3] Donzel L., Greuter F., Christen T

Open access

C.B. Mehta, M. Singh and S. Kumar

suspended particles on couple-stress fluid heated and soluted from below in porous medium. – J. Porous Media, vol.7, No.1, pp.9-18. [6] Sharma R.C. and Sharma M. (2004): Effect of suspended particles on couple-stress fluid heated from below in the presence of rotation and magnetic field. – Indian J. Pure and Appl. Math., vol.35, No.8, pp.973-989. [7] Chandra K. (1938): Instability of fluids heated from below . – Proc. Roy. Soc., A164, pp.231-242. [8] Spiegal E.A. and Veronis G. (1960): On the boussinesq approximation for a compressible fluid

Open access

Amrish Kumar Aggarwal and Anushri Verma

porous medium . Indian J. Phys. 75B (2001), 59–61. [9] S harma R.C., S harma S.: On electrically conducting couple stress fluid heated from below in porous medium in presence of uniform horizontal magnetic field . Int. J. Appl. Mech. Engg. 6 (2001), 2, 251–263. [10] S harma R.C., T hakur D.: On couple stress fluid heated from below in porous medium in hydromagnetics . Czech. J. Phys. 50 (2000), 6, 753–758. [11] R athod V.P., T hippeswami G.: Gravity flow of pulsatile blood through closed rectangular inclined channel with micro