Search Results

You are looking at 1 - 10 of 6,223 items for :

Clear All
Open access

P. H. A. Ngoc and L. T. Hieu

. Russo, and A. Vecchio, “Stability of difference Volterra equations: direct Liapunov method and numerical procedure”, Comput. Math. Appl. 36, 77‒97 (1998). [5] M.R. Crisci, V.B. Kolmanovskii, E. Russo, and A. Vecchio, “On the exponential stability of discrete Volterra equations”, J. Difference Equ. Appl. 6, 667‒680 (2000). [6] C. Cuevas, F. Dantas, M. Choquehuanca, and H. Soto, “Boundedness properties for Volterra difference equations”, Appl. Math. Comput. 219 , 6986‒6999 (2013). [7] S. Elaydi, An Introduction to

Open access

Zenon Moszner

References [1] Bahyrycz A., Forti’s example on an unstable homomorphism equation , Aequationes Math. 74 (2007), 310–313. [2] Baker J.A., Lawrence J., Zorzitto F., The stability of the equation f ( x + y ) = f ( x ) f ( y ), Proc. Amer. Math. Soc. 74 (1979), 242–246. [3] Baker J.A., The stability of the cosine equation , Proc. Amer. Math. Soc. 80 (1980), 411–416. [4] Batko B., Stability of Dhombres’ equation , Bull. Austral. Math. Soc. 70 (2004), 499–505. [5] Cholewa P.W., The stability of the sine equation , Proc

Open access

Lech Kobyliński

REFERENCES 1. IMO, International Code for Intact Stability, 2008 2. Kobyliński L., Kastner S.: Stability and Safety of Ships. Vol. 1, ELSEVIER 2003 3. IMO: Intact stability. General philosophy for ships of all types. Submitted by Poland, doc STAB XXII/6, 1978 4. IMO: Report to the Maritime Safety Committee. Sub-committee on stability, and load lines and on fishing vessel safety, Doc. SLF 51/17, 2008 5. Peters W., Belenky V., Bassler C., Spyrou K., Umeda N., Bulian G., Altmayer B. (2011). The Society of Naval Architects and Marine

Open access

Alina Gerlée

. Ružička, 1997, Classification of the ecological stability of the territory. Ekológia (Bratislava): 16 (1): 81–98. Krebs C. J., 2001, Ekologia. Eksperymentalna analiza rozmieszczenia i liczebności [Experimental analysis of distribution and number, in Polish]. Wydawnictwo Naukowe PWN, Warszawa. O’Naill R. V., 2001, Is it time to bury the ecosystem concept? (with full military honors, of course!). Ecology 82(12): 3275–3284. Ostaszewska, K., 2002, Geografia krajobrazu [Landscape geography; in Polish]. Wydawnictwo Naukowe PWN, Warszawa

Open access

Yihuai Hu, Juanjuan Tang, Shuye Xue and Shewen Liu

References Cleary, C., Daidola, J.C. and Reyling, C.J., 1996. Sailing ship intact stability criteria. Journal of Marine Technology, 33(3), pp.218-232. Luo, H.L., Li, G.L. and Tan, Z.S., 1986. Stability check of airfoil sail. Journal of South China University of Technology, 14(2), pp.36-40(in Chinese). Meng, W.M., Zhao J.H. and Huang, L.Z., 2009. Application prospect of sail-assisted energy-saving ships. Journal of Ship & Boat, 4, pp.1-3(in Chinese). Register of Shipping of the People's Republic

Open access

Tadeusz Kaczorek

References [1] A. Berman and R.J. Plemmons: Nonegative Matrices in the Mathematical Sciences. SIAM, 1994. [2] M. Busłowicz: Stability of linear continuous-time fractional order systems with delays of the retarded type. Bulletin of the Polish Academy of Sciences: Technical Sciences, 56(4), (2008), 319-324. [3] M. Busłowicz: Stability analysis of continuous-time linear systems consisting of n subsystems with different fractional orders. Bulletin of the Polish Academy of Sciences: Technical Sciences, 60(2), (2012

Open access

Jan Zelazny

, Vol. 36, No. 3, 309-329. Bicchetti, D., Maystre, N. (2012) The Synchronized and Long-lasting Structural Change on Commodity Markets: Evidence from High Frequency Data. MPRA Paper No. 37486, Munich. Blot, C., Creel, J., Hubert, P., Labondance, F., Saraceno, F. (2015). Assessing the Link between Price and Financial Stabilty. Journal of Financial Stability, No. 16, 71-88. Bordo, M., Dueker, M.J., Wheelock, D.C. (2001). Aggregate Price Shocks and Financial instability: a Historical Analysis. FRB of Saint Louis, Working

Open access

Michael Gil'

References R. P. Agarwal and S. R. Grace: Asymptotic stability of certain neutral differential equations. Math. Comput. Model. , 31 , (2000) 9-15. A. Bellen, N. Guglielmi and A. E. Ruehli: Methods for linear systems of circuits delay differential equations of neutral type. IEEE Trans. Circuits Syst. , 46 , (1999), 212-216. Y. Chen, A. Xue, R. Lu and S. Zhou: On robustly exponential stability of uncertain neutral systems with time-varying delays and nonlinear perturbations

Open access

T. Kaczorek

References L. Farina and S. Rinaldi, Positive Linear Systems; Theory and Applications , J. Wiley, New York, 2000. T. Kaczorek, Positive 1D and 2D Systems , Springer-Verlag, London, 2002. M. Busłowicz, "Robust stability of positive discrete-time linear systems with multiple delays with unity rank uncertainty structure or non-negative perturbation matrices", Bull. Pol. Ac.: Tech. 55 (1), 347-350 (2007). M. Busłowicz, "Simple stability conditions for

Open access

M. Busłowicz

). [8] J. Klamka, “Local controllability of fractional discrete-time nonlinear systems with delay in control”, in Advances in ControlTheory and Automation , eds. M. Busłowicz and K. Malinowski, pp. 25-34, Printing House of Białystok University of Technology, Białystok, 2012. [9] M. Busłowicz, “Stability of linear continuous-time fractional order systems with delays of the retarded type”, Bull. Pol. Ac.:Tech. 56, 319-324 (2008). [10] I. Petras, “Stability of fractional-order systems with rational orders: a survey”, Fractional