Search Results

You are looking at 1 - 3 of 3 items for :

  • silicone polyethers x
Clear All
Open access

Małgorzata Zięba, Anna Małysa, Tomasz Wasilewski and Marta Ogorzałek

Softener Technology: A Review. Journal of Surfactants and Detergents, 18(2) 199-204. [4] Parvinzedeh M., Hajiraissi R. (2008). Effect of nano and micro emulsion silicone softeners on properties of polyester fibers. Tenside Surf. Det. 45(5), 254-257. [5] Pathiban M., Kumar M.R. (2007). Effect of fabric softener on thermal comfort of cotton and polyester fabrics. Indian Journal of Fibre & Textile Research, 32, 446-452. [6] Montazer M., Hashemikia S. (2012). Application of polyurethane/citric acid/silicone softener composite on cotton/polyester knitted

Open access

V. Knotek, I. Kučerová, T. Horáková and A. Peterová

of Building Sealants Vol. 21, RILEM publications 1999. 8. Vik, M., Základy měření barevnosti, Liberec, Technická univerzita 1995. 9. Bartovská, L., Šišková, M., Fyzikální chemie povrchů a koloidních soustav. 6 ed., VŠCHT Praha 2012. 10. Sandberg, L., Comparisons of Silicone and Urethane Sealant Durabilities. Journal of Materials in Civil Engineering 1991, 3 (4), 278-291.

Open access

Angelina P. Vlahova, Christo K. Kisov, Elka V. Popova, Irina A. Haydushka and Vanya N. Mantareva

ABSTRACT

INTRODUCTION: Photodynamic therapy is a topical treatment of pathogens that involves the use of a photoactive dye (photosensitizer), which is non-toxic when not exposed to light and activated by light of a specifi c wavelength in the presence of oxygen. The highly cytotoxic oxygen species generated by the induced photophysical processes inactivate the pathogenic cells.

The PURPOSE of this study was to present a new method we developed for photodynamic disinfection of prostheses and impressions in prosthetic dentistry and to assess its effectiveness in comparison with some conventional methods of disinfection.

MATERIALS AND METHODS: The method was developed on the basis of series of experimental studies (30 experiments for each type of disinfectant, 30 controls with no disinfection for each material, and 30 direct cultures of each test microorganism - MRSA, P. aeruginosa and C. albicans) using standard test specimens made of prosthesis plastic and impression materials.

RESULTS: The new method of photodynamic disinfection with GaPc1 as photosensitizer was 100% effi cient in C-silicones, A-silicones and polyethers, but not in alginates (40%). To plastics the photodynamic method shows the same effi ciency as the conventional disinfectants of hypochlorite solutions and denture cleansing tablets (100% effect).

CONCLUSION: The method of photodynamic disinfection we developed is a good therapeutic choice against orally transmitted diseases in prosthetic dentistry.