Search Results

You are looking at 1 - 10 of 26 items for :

Clear All
Open access

Petr Vaníček, Robert Kingdon and Marcelo Santos

: Geoid versus quasi-geoid, or physics versus geometry. Presented at Herbstagung 2010 organised by Slovak Academy of Science, Smolenice, Slovakia, October 19-21. Vaníček P., Krakiwsky E. J., 1986: Geodesy: The Concepts. 2nd rev. ed., North-Holland, Amsterdam, 697 p. Vaníček P., Martinec Z., 1994: Stokes-Helmert scheme for the evaluation of a precise geoid. Manuscripta Geodaetica, 19 , 119-128. Véronneau M., Huang J., 2011: A new gravimetric geoid model for Canada: CGG2010. Program and

Open access

Robert Čunderlík, Robert Tenzer, Ahmed Abdalla and Karol Mikula

References Amos M. J., Featherstone W. E., 2009: Unification of New Zealand's local vertical datums: iterative gravimetric quasigeoid computations. J. Geod., 83 , 1, 57-68. Andersen O. B., Knudsen P., 2009: DNSC08 mean sea surface and mean dynamic topography models. J. Geophys. Res., 114, C1100. Andersen O. B., Knudsen P., Berry P., 2009: The DNSC08GRA global marine gravity field from double retracked satellite altimetry. J. Geod., 84 , 191-199. Aoyama Y

Open access

Walyeldeen Godah, Malgorzata Szelachowska and Jan Krynski

). Physical geodesy. W.H. Freeman and Company, San Francisco. Hirt, C., Gruber T. & Featherstone W.E. (2011). Evaluation of the fi rst GOCE static gravity fi eld models using terrestrial gravity, vertical defl ections and EGM2008 quasigeoid heights. Journal of Geodesy, 85 (10), 723-740, Królikowski, C. (2006). Zdjęcie grawimetryczne Polski - jego wartość i znaczenie dla nauk o Ziemi, Biuletyn Państwowego Instytutu Geologicznego, 420, Warszawa (104 pp.). Krynski, J. (2007). Precise

Open access

Raluca Maria Mihalache and Andreea Manescu

municipality, RevCAD Journal of Cadastre no. 6, Alba Iulia, pp 35-43. Chirila, C., Mihalache R.M. (2011), Coordinate transformations for integrating local map information in the new geocentric European system, for urban real-estate cadastre achievement, Scientific Journal ”Mathematical modelling in civil engineering”, Vol. 7 - No. 4, Bucharest , pp 159-165. Dumitru P.D., 2011, Contributions to determine the quasigeoid in Romania, Technical University of Civil Engineering Bucharest, PhD thesis. Salceanu G., 2009, Contributions

Open access

Piotr Banasik and Kazimierz Bujakowski


In these paper are presented two ways of performing leveling through terrain obstacles. They use properties of the quasigeoid course with respect to the ellipsoid within a given area. The analysis of changes in quasigeoid to ellipsoid slope have been made on the basis of the national quasigeoid models, calculating the slope components ξ, η. This allows to present practical recommendations for location of intermediate benchmarks in the leveling methods through obstacles.

Open access

Jan Krynski

. Godah, W., Szelachowska, M. and Krynski, J. (2014a). Accuracy assessment of GOCE-based geopotential models and their use for modelling the gravimetric quasigeoid - A case study for Poland, Geodesy and Cartography, Vol. 63, No 1, 3-24, DOI: 10.2478/geocart-2014-0001 Godah, W., Krynski, J. and Szelachowska, M., (2014b). On the contribution of GOCE mission to modelling the gravimetric geoid. A case study - a sub-region of East Africa and Central Europe. The 3rd International Gravity Field Service (IGFS) General Assembly, Shanghai, China, 30 June - 6 July

Open access

Mehdi Eshagh

gravimetric quasigeoid model KTH08 over Sweden. J. Applied Geod., 3 , 143-153. Bilker M., 2004: Work on NKG 2004 geoid at KMS. Unpublished report. Bjerhammar A., 1973: Theory of errors and generalized matrix inverses. ELSEVIER scientific publishing company, Amsterdam-London-New York. Ellmann A., 2004: The geoid for the Baltic countries determined by the least-squares modification of Stokes' formula. Doctoral thesis in Geodesy, Royal Institute of Technology, Stockholm, Sweden

Open access

Roman Kadaj and Tomasz Świętoń

control networks - International Symposium in Sopron, 4-10 July, 1977). Akademiai Kiado, Budapest, 95-104. Hirt C., (2011). Assessment of EGM2008 over Germany using accurate quasi-geoid heights from vertical deflections, GCG05 and GPS/ levelling. Zeitschrift für Geodäsie, Geoinformation und Landmanagement (zfv) 136(3): 138-149. Hofmann-Wellenhof B., Lichtenegger H., Wasle E. (2008). GNSS Global Navigation Satellite Systems. Springer-Verlag Wien. Jaworski L. i in.(2012). Zintegrowanie podstawowej osnowy geodezyjnej na

Open access

J. Kaminskis, A. Vallis, I. Stamure, M. Reiniks, I. Geipele and N. Zeltins

). Geoid of the Nordic and Baltic Region from gravimetry and satellite altimetry. In J. Segawa, H. Fujimoto& S. Okubo (Eds.), Gravity, geoid and marine geodesy . (pp. 540–547). IAG Symp. Series, 117, Berlin: Springer. 7. International Centre for Global Earth Models. Retrieved from 8. Jäger, R., Kaminskis, J., Strauhmanis, J., & Younis, G. (2012). Determination of quasi-geoid as height component of the geodetic infrastructure for GNSS positioning services in the Baltic States. Latvian Journal of Physics and Technical

Open access

Juraj Janák, Petr Vańiček, Ismael Foroughi, Robert Kingdon, Michael B. Sheng and Marcelo C. Santos

., Ellmann A., Featherstone W. E., Santos M. C., Martinec Z., Hirt Ch., Avalos-Naranjo D., 2013: Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings. Stud. Geophys. Geod., 57 , 369–400. Werner M., 2001: Shuttle Radar Topography Mission (SRTM), Mission overview. J. Telecom (Frequenz), 55 , 75–79. Yildiz H., Forsberg R., Ågren J., Tscherning C. C., Sjöberg L. E., 2012: Comparison of remove-compute-restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the