Search Results

You are looking at 1 - 10 of 13 items for :

  • pile load capacity calculation x
Clear All
Open access

Bogumił Wrana

–782. [16] K arlsrud K., Prediction of load-displacement behavior and capacity of axially loaded piles in clay based on analyses and interpretation of pile load test result , PhD Thesis, Trondheim, Norwegian University of Science and Technology, 2012. [17] K empfert H.-G., B ecker P., Axial pile resistance of different pile types based on empirical values , Proceedings of Geo-Shanghai 2010 deep foundations and geotechnical in situ testing (GSP 205), ASCE, Reston, VA, 2010, 149–154. [18] K olk H.J., van D er V elde A., A Reliable Method to Determine

Open access

Zygmunt Meyer and Kamil Stachecki

, mobilizacji podstawy i pobocznicy [The use of a static load test to predict settelment, mobilization of pile skin and toe]. Warsztaty Pracy Projektanta Konstrukcji. Polski Związek Inżynierów i Techników Budownictwa, Warszawa. MEYER Z., KOWALÓW M. 2010: Model krzywej aproksymującej wyniki testów statycznych pali [Model of a curve aproximating results of static load test]. Inż. Mor. Geotech. 3: 438–441. MEYER Z., SZMECHEL G. 2015: Problemy zasad wymiarowania pali [Problems of piles dimensioning]. Inż. Mor. Geotech. 3: 444–449. MEYER Z., ŻARKIEWICZ K. 2015

Open access

Zygmunt Meyer


Statistic load test is the most commonly used method for estimation of the bearing capacity of piles. From the test we obtain the series a values: load-settlement, Q–s curve. In practice, it is extremely difficult to reach the critical load of the pile when the settlement turns out of control. The existing methods that allow bearing capacity to be calculated give the value which is very often 1/10 of the critical load. The question arises if it is possible based upon short series of load, i.e., 0–0.4 critical load, to predict the critical value of the load, with accuracy which is sufficient for practical calculation. The paper presents a method how to calculate the critical load based upon short series of load in the static load tests.

Open access

Adam Krasiński

.V., Lisse, The Netherlands, 2003, 372. [16] Ne SMITH W.M., Static capacity analysis of augered, pressure-injected displacement piles , Proc. of the Int. Deep Foundation Congress 2002, Geotechnical Special Publication, No. 116, Vol. 2, ASCE, 1174-1186. [17] Van IMPE W.F., Considerations in the auger pile design , Proc. of the 1st Int. Geotechnical Seminar on Deep Foundations on Bored and Auger Piles, BAP I, Balkema, Rotterdam, 1988, 193-217. [18] Van IMPE W.F., Influence of screw pile installation parameters on the overall

Open access

Wojciech Puła and Łukasz Zaskórski

bearing capacity of cohesionless soil using the random finite element method, Structure and Infrastructure Engineering, 2014, 11 (5), 707-720. [50] RACKWITZ R., FIESSLER B., Structural reliability under combined random loads sequences, Computers and Structures, 1978, 9, 489-494. [51] RACKWITZ R., Reviewing probabilistic soils modeling, Computers and Geotechnics, 2000, 26(3-4), 309-330. [52] ROSENBLATT M., Remarks on a multivariate transformation, Annals of Mathematical Statistics, 1952, 23, 470-472. [53

Open access

Michal Hoľko and Jakub Stacho

References Almeida, V. S. - De Paiva, J. B. (2007) Static analysis of soil/pile interaction in layered soil by BEM/BEM coupling. Advances in Engineering Software. No. 38, pp. 835-845. Brown, D. A. (2005) Practical consideration in the selection and use of continuous flight auger and drilled displacement piles. Advances in design and testing deep foundations, Texas, U.S., pp. 251-261. Coyle, H. M. - Reese, L. C. (1966) Load transfer for axially loaded piles in clay. Soil Mechanics and Foundations 1966, No. 92, pp

Open access

Jitendra Kumar Sharma and Pooja Gupta

] analysed non-homogeneous floating granular piles considering the non-linear variation of the deformation modulus with the length of the pile. Alamgir et al. [ 6 ] proposed the deformation behaviour of a soft ground reinforced with stone columns installed in a group, using a simple analytical approach. Madhav et al. [ 7 ] discussed about the settlement and load distribution in a granular piled raft. Zhang et al. [ 8 ] presented the settlement calculation of a foundation of composites reinforced with stone column. Indraratna et al. [ 9 ] presented a numerical model (finite

Open access

Zygmunt Meyer and Krzysztof Żarkiewicz

the M-K curve (1) [ 9 ]. Figure 4 The results of static load tests of two model piles. S i , c a l c = C N g r κ 1 − N i , m e a s N g r − κ − 1 $$\begin{array}{} \displaystyle S_{i,calc}=C\frac{N_{gr}}{\kappa}\left[\left(1-\frac{N_{i,meas}}{N_{gr}}\right)^{-\kappa}-1\right] \end{array}$$ (1) where C is the settlement curve parameter (mm/kN), N gr is the bearing capacity of the pile, when the uncontrolled settlements are observed (kN), κ is the dimensionless parameter of settlement curve(–) N i , meas is the applied load at i

Open access

Michał Wymysłowski and Zygmunt Kurałowicz

budowli mostowych , Transport and Communication Publishers, Warsaw 2009. [5] M alý V., R emeš M., Structural design for the protection of Pier foundations , 2004/2005, . [6] N ishioka H., K oda M., H irao J., H iguchi S., Development of Sheet–Pile Foundation that Combines Footing with Sheet Piles , Railway Technical Research Institute, Tokyo, Japan, Quarterly Report, 2008, Vol. 49, No. 2, 73–78. [7] P unrattanasin P., The Capacity of Sheet Pile Foundation under Eccentric Loading

Open access

M. Bukowski, P. Łysiak, R. Oleszek and W. Trochymiak

Polish). 9. W. W. Sokołowski, “Statika sypučej sredy”, Gosudarstwiennoje Izdatielstvo Fizyko-Matematičeskoj Literatury, Moskva, 1960 (in Russian). 10. A. Tejchman and others, “Load Capacity and Settlement of Pile Foundations”, Monograph, Gdańsk University of Technology, 2001 (“Nośność i osiadanie fundamentów palowych”) (in Polish). 11. W. Trochymiak, M. Bukowski, P. Łysiak, R. Oleszek and others, „Settlement of bridge structures of the Siekierkowska Route over Wał Miedzeszyński Street”, raport for Municipal Roads Management City of Warsaw, Poland