Search Results

You are looking at 1 - 10 of 100 items for :

  • photocatalysis x
Clear All
Open access

Joanna Grzechulska-Damszel and Antoni Morawski

References Hoffman M. R., Martin S. T., Choi W., Bahnemann D. W.: Environmental Applications of semiconductor Photocatalysis, Chem. Rev. , 1995 , 95(1), 69 - 91. Linsebigler A. L., Lu G., Yates Jr. J. T.: Photocatalysis on TiO 2 Surfaces: Principles, Mechanisms, and Selected Results, Chem. Rev. , 1995 , 95(3), 735 - 758. Schiavello M., Heterogeneous photocatalysis, John Willey & Sons, Chichester, New York, Wienheim, Brisbane, Singapore, Toronto, 1997

Open access

Orsolya Fónagy, Péter Hegedűs, Erzsébet Szabó-Bárdos, Annamária Dobrádi and Ottó Horváth

.: Photocatalytic degradation of benzenesulfonate on colloidal titanium dioxide, Water Res. , 2011 45 (4) 1617–1628 DOI: 10.1016/j.watres.2010.11.045 [6] Zsilák, Z.; Szabó-Bárdos, E.; Fónagy, O.; Horváth, O.; Horváth, K.; Hajós, P.: Degradation of benzenesulfonate by heterogeneous photocatalysis combined with ozonation, Catal. Today , 2014 230 55–60 DOI: 10.1016/j.cattod.2013.10.039 [7] Zsilák, Z.; Fónagy, O.; Szabó-Bárdos, E.; Horváth, O.; Horváth, K.; Hajós, P.: Degradation of industrial surfactants by photocatalysis combined with ozonation, Environ. Sci

Open access

Sylwia Mozia, Dominika Darowna, Jacek Przepiórski and Antoni W. Morawski

., & Dezotti, M. (2009). Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ . 407, 3572-3578. DOI: 10.1016/j. scitotenv.2009.01.013. 4. Rizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F. & Belgiorno, V. (2009). Degradation of diclofenac by TiO 2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res . 43, 979-988. DOI: 10.1016/j.watres.2008.11.040. 5. Musa, K.A. & Eriksson, L.A. (2009). Photodegradation

Open access

Sándor Guba, Viola Somogyi and Erzsébet Szabóné Bárdos

.02.003 [4] Fujishima, A.; Honda, K.: Electrochemical photolysis of water at a semiconductor electrode, Nature, 1972 238, 37-38 10.1038/238037a0 [5] Fujishima, A.; Rao, T.N.; Tryk, D.A.: Titanium dioxide photocatalysis, J. Photochem. Photobiol. C: Rev., 2000 1, 1-21 10.1016/S1389-5567(00)00002-2 [6] Cazoir, D.; Fine, L.; Ferronato, C.; Chovelon, J.- M.: Hydrocarbon removal from bilgewater by a combination of air-stripping and photocatalysis, J. Hazard. Mat., 2012 235-236, 159-168 10.1016/j.jhazmat.2012.07.037 [7] Irawaty, W

Open access

L. Grigorjeva, J. Rikveilis, J. Grabis, Dz. Jankovica, C. Monty, D. Millers and K. Smits

References 1. Fujishima. A., & Zhang, X. (2006). Titanium dioxide photocatalysis: present situation and future approaches. C.R.Chimie , (9), 750-760. 2. Henderson, M.A. (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports , 66 (6/7), 185-297 . 3. Rauf, M.A., Meetani M.A., & Hisaindee, S. (2011). An overiew on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with transient metals. Desalination, 276 , 13-27. 4. Sun, L., Zhao, D

Open access

Dheeaa Al Deen Atallah Aljubourya, Puganeshwary Palaniandy, Hamidi Bin Abdul Aziz and Shaik Feroz

References [1] Giri, A.S.; Golder, A.K.: Fenton, photo-Fenton, H2O2 photolysis, and TiO2 photocatalysis for dipyrone oxidation: Drug removal, mineralisation, biodegradability, and degradation mechanism, Ind. Eng. Chem. Res., 2014, 53(1), 1351-1358. DOI 10.1021/ie402279q [2] Durán, A.; Monteagudo, J.M.: Solar photocatalytic degradation of reactive blue 4 using a Fresnel lens, Water Res., 2007, 41(3), 690-698. DOI 10.1016/j.watres.2006.06.042 [3] Djaneye-Boundjou, G.; Amouzou, E.; Kodom, T.; Tchakala, I.; Anodi, K

Open access

Magdalena Janus, Kamila Bubacz, Justyna Zatorska, Ewelina Kusiak-Nejman, Adam Czyżewski and Antoni W. Morawski

LITERATURE CITED 1. Fujishima, A.X., Zhang & Tryk, D.A. (2007). Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int. J. Hydrogen Energy 32(14), 2664–2672. DOI: 10.1016/j.ijhydene.2006.09.009. 2. Lackhoff, M., Prieto, X., Nestle, N., Dehn, F. & Niessner, R. (2003). Photocatalytic activity of semiconductor-modified cement-influence of semiconductor type and cement angeing. Appl. Catal. B-Environ. 43(3), 205–216. DOI: 10.1016/S0926-3373(02)00303-X. 3. Meng, T., Yu, Y., Qian, X., Zhan, S. & Qian, K

Open access

Anoop Verma, Harmanpreet Kaur and Divya Dixit

sonolysis combined with photocatalysis in the degradation of an azo dye, The Royal Society of Chemistry and Owner Societies , 4 (24), 6123-6128. [19] Silva, A.M.T., Nouli, E., Carmo-Apolinário, Â.C., Xekoukoulotakis, N.P. & Mantzavinos, D. (2007). Sonophotocatalytic/H2O2 degradation of phenolic compounds in agro-industrial effluents, Catalysis Today , 124 (3-4), 232-239. [20] Singh, H.K, Muneer, M., & Bahnemann, D. (2003). Photocatalysed degradation of a Herbicide derivative, bromacil, in aqueous suspensions of titanium dioxide

Open access

Michał Bodzek and Mariola Rajca

Abstract

Photocatalysis process belongs to an advanced oxidation technology for the removal of persistent organic compounds and microorganisms from water. It is the technology with a great potential, a low-cost, environmental friendly and sustainable treatment technology to align with the “zero” waste scheme in the water/wastewater industry. At present, the main technical barriers that impede its full commercialization remained on the post-recovery of the catalyst particles after water treatment. This paper reviews the background of the process and photooxidation mechanisms of the organic pollutants and microorganisms. The review of the latest progresses of engineered-photocatalysts, photo-reactor systems, and the kinetics and modeling associated with the photocatalytic and photodisinfection water and wastewater treatment process, has been presented. A number of potential and commercial photocatalytic reactor configurations are discussed, in particular the photocatalytic membrane reactors. The effects of key photo-reactor operation parameters and water quality on the photoprocess performances in terms of the mineralization and disinfection are assessed.

Open access

Joop Schoonman and Dana Perniu

Abstract

One of the main requirements for a future Hydrogen Economy is a clean and efficient process for producing hydrogen using renewable energy sources. Hydrogen is a promising energy carrier because of its high energy content and clean combustion. In particular, the production of hydrogen from water and solar energy, i.e., photocatalysis and photoelectrolysis, represent methods for both renewable and sustainable energy production. Here, we will present the principles of photocatalysis and the PhotoElectroChemical cell (PEC cell) for water splitting, along with functional materials. Defect chemical aspects will be high-lighted. To date, the decreasing length scale to the nanoscale of the functional materials attracts widespread attention. The nanostructure is beneficial in case diffusion lengths of the photo-generated charge carriers are substantially different.