Search Results

You are looking at 1 - 10 of 2,572 items for :

  • optimum control x
Clear All
Open access

M. Siwczyński and K. Hawron

. Siwczyński, S. Żaba, and A. Drwal, “Energy-optimal current distribution in a complex linear electrical network with pulse or periodic voltage and current signals. Optimal control”, Bull. Pol. Ac.: Tech. 64 (1), 45–50 (2016). [5] M. Siwczyński and M. Jaraczewski, “Principle of similar equations for optimization of theory of electric power and energy”, Przegląd Elektrotechniczny 86 (11a), 260–264 (2010) [in Polish]. [6] H. Akagi, Y. Kanazawa, and A. Nabae, “Generalized theory of the instantaneous reactive power in three–phase circuits”, IPEC 83, 1375

Open access

Jan Cvejn

.G. ZIEGLER and N.B. NICHOLS: Optimum settings for automatic controllers. Trans. of the ASME, 64 (1942), 759-768. [6] G.H. COHEN and G.A. COON: Theoretical consideration of retarded control. Trans. of the ASME, 75 (1953), 827-834. [7] K.L. CHIEN, J.A. HRONES and J.B. RESWICK: On the automatic control of generalized passive systems. Trans. of the ASME, 74, (1952), 175-185. [8] A.M. LOPEZ, P.W. MURRILL and C.L. SMITH: Controller tuning relationships based on integral performance criteria. Instrumentation Technology, 14(11), 1967

Open access

Adam Kowalewski and Anna Krakowiak

References [1] H.T. BANKS and A. MANITIUS: Projection series for retarded functional differential equations with application to optimal control problems. J. Differential Equations , 18 (1975), 296-332. [2] A. BENSOUSSAN, G. DA PRATO, M.C. DELFOUR and S.K. MITTER: Representation and Control of Infinite Dimensional Systems. 1, 2 Birkhauser, Boston 1993. [3] M.C. DELFOUR: The linear quadratic optimal control problem for hereditary differential systems:theory and numerical solution. Applied Mathematical

Open access

C. R. Dache, E. Rosu, M. Gaiceanu, R. Paduraru, T. Munteanu and G. Frangopol

7. REFERENCES [1] M.E. Roşu, I. Bivol, C Nichita, M. Găiceanu, Optimizarea Energetică a Sistemelor de Conversie Electromecanică, Editura Tehnică, Bucureşti, 1999. [2] Marian Găiceanu, Conducerea Optimală a Sistemelor de Acţionare Reglabile cu Maşini Asincrone Utilizând Metode Avansate de Comandă, PhD Thesis, 2002. [3] C. Thanga Raj, S. P. Srivastava, and Pramod Agarwal – Differential Evolution based Optimal Control of Induction Motor Serving to Textile Industry, IAENG International Journal of Computer Science, 35:2, IJCS_35_2_03, 2008 [4

Open access

Navvab Kashiri, Mohammad Ghasemi and Morteza Dardel

References M. Diehl, H.G. Bock, H. Diedam and P.-B. Wieber: Fast direct multiple shooting algorithms for optimal robot control. In M. Diehl and K. Mombaur: Fast motions in biomechanics and robotics optimization and feedback control. Springer-Verlag, Berlin/Heidelberg, 2007, 65-93. Jr.J. E. Cochran and R. Dai: Wavelet collocation method for optimal control problems. J. Optimization Theory and Applications , 143 (2009), 265-278. B.J. Driessen and N. Sadegh: Minimum-time control of

Open access

Katalin György

References [1] Kirk, D. E., Optimal Control Theory: An Introduction. Englewood Cliffs, NJ: Prentice Hall, 1970, reprinted by Dover, Mineola, NY, 2004. [2] David, L., Tehnici de optimizare, Petru Maior University, 2000. [3] Erdem, E. B and Alleyne A. G., Design of a Class of Nonlinear Controllers via State Dependent Riccati Equations, IEEE Trans. Control Syst. Technol., vol. 12, no. 1, pp. 133–137, January 2004. [4] Dutka, A. S., Ordys A. W. and Grimble, M. J., Optimized Discrete-Time State Dependent Riccati Equation Regulator, in Amer

Open access

Adam Kowalewski

). Non-trivality of Sobolev spaces of infinite order for a full euclidean space and a torus, Matiematiczeskii Sbornik   100 : 436-446. Dubinskij, J. A. (1986). Sobolev Spaces of Infinite Order and Differential Equations , Teubner-Texte zur Mathematik, Vol. 87, Teubner-Verlag, Leipzig. Dunford, N. and Schwartz, J. (1958). Linear Operators, Vol. 1 , John Wiley and Sons, New York, NY. El-Saify, H. A. and Bahaa, G. M. (2002). Optimal control for n x n hyperbolic systems involving operators

Open access

M. Galicki

-1009. [25] Roberts R.G. and Maciejewski A.A. (1992): Nearest optimal repeatable control strategies for kinematically redundant manipulators. - IEEE Trans. Robot. Automat. vol.8, No.3, pp.327-337. [26] Nakamura Y. and Hanafusa H. (1986): Inverse kinematic solutions with singularity robustness for robot manipulator control. - Dyn. Syst. Measurements and Control, vol.108, No.3, pp. 163-171. [27] Wampler C. W. and Leifer L. J. (1988): Applications of damped least-squares methods to resolved-rate and resolved-acceleration control of manipulators

Open access

Józef Lisowski

Press, New York, 2007, p. 717-733. 13. Nise N.S.: Control systems engineering . John Wiley and Sons, New York, 2011. 14. Nowak A.S, Szajowski K.: Advances in dynamic games, applications to economics, fnance, optimization and stochastic control . Birkhauser, Boston, Basel, Berlin, 2000. 15. Osborne M.J.: An introduction to game theory . Oxford University Press, New York, 2004. 16. Pietrzykowski Z.: Te navigational decision support system on a sea-going vessel . Maritime University, Szczecin, 2011. 17. Radzik T.: Characterization of optimal strategies in

Open access

Adam Kowalewski and Anna Krakowiak

). Dubinskii, J. A. (1981). About one method for solving partial differential equations, Doklady Akademii Nauk SSSR 258: 780-784, (in Russian). Dunford, N. and Schwartz, J. (1958). Linear Operators, Vol. 1 , John Wiley and Sons, New York. El-Saify, H. A. (2005). Optimal control of n x n parabolic lag system involving time lag, IMA Journal of Mathematical Control and Information 22(3): 240-250. El-Saify, H. A. (2006). Optimal boundary control problem for n x n infinite order parabolic