Search Results

You are looking at 1 - 10 of 122 items for :

  • laser heat treatment x
Clear All
Open access

K.-A. Lee, Y.-K. Kim, J.-H. Yu, S.-H. Park and M.-C. Kim

Abstract

This study manufactured Ti-6Al-4V alloy using one of the powder bed fusion 3D-printing processes, selective laser melting, and investigated the effect of heat treatment (650°C/3hrs) on microstructure and impact toughness of the material. Initial microstructural observation identified prior-β grain along the building direction before and after heat treatment. In addition, the material formed a fully martensite structure before heat treatment, and after heat treatment, α and β phase were formed simultaneously. Charpy impact tests were conducted. The average impact energy measured as 6.0 J before heat treatment, and after heat treatment, the average impact energy increased by approximately 20% to 7.3 J. Fracture surface observation after the impact test showed that both alloys had brittle characteristics on macro levels, but showed ductile fracture characteristics and dimples at micro levels.

Open access

Dominika Panfil, Piotr Wach, Michał Kulka and Jerzy Michalski

El-Moula A.A., Tribomechanical and electromechanical properties of plasma nitriding titanium, Surface & Coatings Technology 2015, no. 276, s. 658-667. [17] She D., Yue W., Fu Z., Wang C., Yang X., Liu J., Effects of nitriding temperature on microstructures and vacuum tribological properties of plasma-nitrided titanium, Surface & Coatings Technology 2015, no. 264, s. 32-40. [18] Kulka M., Michalski J., Panfil D., Wach P., Laser heat treatment of gas-nitrided layer produced on 42CrMo4 steel, Inżynieria Materiałowa 5(207) (2015) 301-305

Open access

A. Bartkowska, A. Pertek, M. Jankowiak and K. Jóźwiak

właściwości warstw borków żelaza otrzymanych w procesie borowania gazowego. Wyd. Politechniki Poznańskiej, Poznań (2001). A. N. Safonov, Special features of boronizing iron and steel using a continuous-wave CO 2 laser. Metal Science and Heat Treatment 40 , 1-2 (1998). K. Wiśniewski, A. Pertek, Influence of laser alloying with amorphous boron on structure and microhardness of 41Cr4. Archives of Metallurgy and Materials 54 , 1, 111-114 (2009).

Open access

J. Kusinski, S. Kac, A. Kopia, A. Radziszewska, M. Rozmus-Górnikowska, B. Major, L. Major, J. Marczak and A. Lisiecki

, Trans. Cracow University of Technology, Cracow, 1984, (in Polish). [9] J. Kusinski, “Effect of the heating rate, time and temperature on the hypereutectoid tool steels homogeneity”, PhD Thesis , AGH-University of Sciences and Technology, Cracow, 1976, (in Polish). [10] Z. Kwaczynski and R. Dzioch, “Tests of hardening steel by a continuous CO2 laser of 150 W power”, Metallography and Heat Treatment 41, 20-27 (1979), (in Polish). [11] H. Andrzejewski and Z. Wieczynski, “Effect of basic technological

Open access

M.C. Oh, H. Yeom, Y. Jeon and B. Ahn

Abstract

The influence of surface heat treatment using laser radiation on the fatigue strength and corresponding microstructural evolution of AISI 4140 alloy steel was investigated in this research. The AISI 4140 alloy steel was radiated by a diode laser to give surface temperatures in the range between 600 and 800°C, and subsequently underwent vibration peening. The fatigue behavior of surface-treated specimens was examined using a giga-cycle ultrasonic fatigue test, and it was compared with that of non-treated and only-peened specimens. Fatigue fractured surfaces and microstructural evolution with respect to the laser treatment temperatures were investigated using an optical microscope. Hardness distribution was measured using Vickers micro-hardness. Higher laser temperature resulted in higher fatigue strength, attributed to the phase transformation.

Open access

P. Tęczar, B. Majkowska-Marzec and M. Bartmański

: Influence of laser process parameters on macro- and microstructures and tensile property. Powder Technology 342 (2019), 371-379. 28. Sun J., Zhu X., Qiu L., Wang F., Yang Y., Guo L.: The microstructure transformation of selective laser melted Ti-6Al-4V alloy. Materials Today Communications 19 (2019), 277-285. 29. Fan Z., Feng H.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results in Physics 10 (2018), 660-664. 30. Tong Y., Yang N., Han K., Yuan S., Zhou J., Chen X., Shi L., Li W., Xudong R.: Surface morphology of titanium

Open access

K. Żaba, S. Puchlerska, M. Kwiatkowski, M. Nowosielski, M. Głodzik, T. Tokarski and P. Seibt

-MALDI, Analyst 131, 966-986 (2006). [21] PN-EN ISO 6892-1:2009. [22] PN-EN 10049:2008P. [23] G. Vander Voort, Metallography of superalloys, Industrial Heating 70, 40-43 (2003). [24] G. Appa Rao, K. Satya Prasad, M. Kumar, M. Srinivas, D. S. Sarma, Effect of standard heat treatment on the microstructure and mechanical properties of hot isostatically pressed superalloy inconel 718, J. Mater. Sci. Technol. 19, 1-9 (2003). [25] S.A. David, S.S. Babu, J.M. Vitek, Welding: Solidification and

Open access

C. Jung, M.G. Lee and Y. Jeon

Strain Rate Loading Conditions, Journal of Materials Processing Technology 71.2 , 224-34 Web. (1997). [4] http://www.etrema.com/cu18a-ultrasonic-actuator . [5] K. Dai, L. Shaw, Comparison between shot peening and surface nanocrystallization and hardening processes, Materials Science and Engineering A 463 (1-2), 46-53 (2007). [6] M.C. Oh, H. Yeom, Y. Jeon, B. Ahn, Microstructural Characterization Of Laser Heat Treated AISI 4140 Steel With Improved Fatigue Behavior, Archives of Metallurgy and Materials 60 , 2 (2015). [7] Y. Furuya, H

Open access

P. Kurp, Z. Mucha, S. Tofil and K. Mulczyk

References [1] M. Rozmus-Górnikowska, J. Kusinski, M. Blicharski, The influence of the laser treatment on microstructure of the surface layer of an X5CRNI18-10 austenitic stainless steel, Archives of Metallurgy and Materials 56(3), 717-721 (2011). [2] A. Bartkowska, A. Pertek, M. Jankowiak, K. Jóźwiak, Laser surface modification of borochromizing C45 steel, Archives of Metallurgy and Materials 57(1), 711-714 (2011). [3] M. Myśliwiec, Cieplno-mechaniczne podstawy spawalnictwa, WNT, Warszawa, 1970

Open access

K. Labisz, T. Tański, D. Janicki, W. Borek, K. Lukaszkowicz and L. A. Dobrzański

. Li, Y. Chen, Opt. Laser Technol. 77, 134-143 (2016). [18] Y. Fu, J. Li, Y. Liu, L. Liu, H. Zhao, Y. Pan, Ceramics Internat. 41 (10), 12535-12542 (2015). [19] M. Vlasova, M. Kakazey, P.A. Márquez Aguilar, V. Stetsenko, A. Bykov, S. Lakiza, J Alloy Compd.. 586 (1), 199-204 (2014). [20] F. Niu, D. Wu, S. Zhou, G. Ma, Journal of the European Ceramic Society. 34 (15), 3811-3817. [21] T. Hwa-Hsing, Ch. Ming-Lu , Y. Hsiao-Chuan, Journal of the European Ceramic Society. 31 (8), 1383-1388 (2011