Search Results

You are looking at 1 - 10 of 11 items for :

  • inverted torsion pendulum x
Clear All
Open access

M.L. Lei, L. Chen and X.M. Xiong

, 2011. [9] J.D. Ferry, Viscoelastic Properties of Polymers, Wiley, New York, 1980. [10] X.M. Xiong, J.X. Zhang, Viscoelastic measurement of complex fluids using forced oscillating torsion resonator with continuously varying frequency capability, Rheologica Acta 49, 1117-1126 (2010). [11] X.M. Xiong, J.X. Zhang, Amplitude dependence of elasticity for the assembly of SiO2 powders under shear oscillation strain. Physical Review E 81, 042301 (2010). [12] L.D. Landau, E.M. Lifshits, Fluid Mechanics, Addison

Open access

Ernest Czerwiński, Paweł Olejnik and Jan Awrejcewicz

Marchi F., Marconi L., Pucacco G., Stanga R., Visco M. (2013), Torsion pendulum revisited, Physics Letters A , Vol. 377 (25-27), 1555-1562. 5. Cadoni M., De Leo R., Gaeta G. (2013), Solitons in a double pendulums chain model, and DNA roto-torsional dynamics, Journal of Nonlinear Mathematical Physics , Vol. 14(1), 128-146. 6. Coullet P., Gilli J.-M., Rousseaux G. (2009), On the critical equilibrium of the spiral spring pendulum, Proceedings of the Royal Society A , Vol. 466, 407-421. 7. De Marchi F., Pucacco G., Bassan M., De Rosa R., Di Fiore

Open access

Xiu Sheng Wu, Ju Fang Cao, Zhi Jun Chen and Wei Liu

Abstract

The low-frequency mechanical spectra of lanthanum cobaltite based mixed conducting oxides have been measured using a computer-controlled inverted torsion pendulum. The results indicate that the internal friction spectra and shear modulus depend on the Sr doping contents (x). For undoped samples, no internal friction peak is observed. However, for La0.8Sr0.2CoO3‒δ, three internal friction peaks (P2, P3 and P4) are observed. In addition to these peaks, two more peaks (P0 and P1) are observed in La0.6Sr0.4CoO3‒δ. The P0 and P1 peaks show characteristics of a phase transition, while the P2, P3 and P4 peaks are of relaxation-type. Our analysis suggests that the P0 peak is due to a phase separation and the P1 peak is related to the ferromagnetic–paramagnetic phase transition. The P2, P3 and P4 peaks are associated with the motion of domain walls. The formation of this kind of domain structure is a consequence of a transformation from the paraelastic cubic phase to the ferroelastic rhombohedral phase. With partial substitution of Fe for Co, only one peak is observed, which is discussed as a result of different microstructure.

Open access

M. Majewski and L.B. Magalas

spectroscopy, Sol. St. Phen. 137 , 15-20 (2008). [7] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14 , 1201-1206 (1981). [8] L.B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Materials Science and Engineering A 521-522 , 384-388 (2009). [9] S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini

Open access

Qian Wang, Xiao Yan and Kaiyu Qin

algorithm. IEEE Transactions on Instrumentation and Measurement, 43 (2), 245-250. [7] Agrež, D. (2010). Estimation and tracking of the power quality disturbances in the frequency domain. Measurement Science Review, 10 (6), 189-194. [8] Yoshida, I., Sugai, T., Tani, S., Motegi, M., Minamida, K., Hayakawa, H. (1981). Automation of internal friction measurement apparatus of inverted torsion pendulum type. Journal of Physics E: Scientific Instruments, 14 (10), 1201. [9] Wu, R.C., Chiang, C.T. (2010). Analysis of the exponential

Open access

M. Majewski and L.B. Magalas

: Materials Science and Engineering 31 , 012019 (2012). [4] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14 , 1201-1206 (1981). [5] D. Agrež, A frequency domain procedure for estimation of the exponentially damped sinusoids, 12 MTC: 2009 IEEE Instrumentation and Measurement Technology Conference 1-3 , 1295-1300 (2009). [6] L.B. Magalas, Determination of the logarithmic decrement in mechanical spectroscopy, Sol. St

Open access

R. Cosimati and Daniele Mari

. Massardier, X. Kleber, Thermoelectric power applied to metallurgy: principle and recent applications, Int. J. Mat. Res. (formerly Z. Metallkd.) 100, 1461-1465 (2009). [8] S.M. Walley, Historical origins of indentation hardness testing, Materials Science and Technology 28, 1028-1044 (2012). [9] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14, 1201-1206 (1981). [10] I. Tkalcec, C. Azcoitia, S

Open access

L.B. Magalas and M. Majewski

wide area monitoring, Power and Energy Society General Meeting, 2009. PES ’09. IEEE (2009). [18] X.J. Shi, X.J. Zhao, G.H. Xiao, Boxed milk metamorphism detecting method based on wavelet and Hilbert transform, 2009 IEEE International Conference on Automation and Logistics (ICAL 2009), August 05-07, 2009, Shenyang, China. New York: IEEE, 1-3 , 1454-1458 (2009). [19] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14

Open access

Xin Liu, Yongfeng Ren, Chengqun Chu and Wei Fang

). Automation of internal friction measurement apparatus of inverted torsion pendulum type. J. Phys. E. Sci. Instrum ., 14, 1201–1206. [11] Rife, D.C., Vincent, G.A. (1970). Use of the discrete Fourier transform in the measurement of frequencies and levels of tones. Bell Syst. Tech. J ., 49(2), 197–228. [12] Zhenmiao, D., Yu, L. (2007). The Starting Point Problem of Sinusoid Frequency Estimation Based on Newton’s Method. Acta Electronica Sinica , 35(1), 104–107. [13] Xudong, W., Yu, L., Zhenmiao, D. (2008). Modified Rife algorithm for frequency estimation

Open access

L.B. Magalas

1988. [27] A.D. Poularikas (ed.), The Transforms and Applications. Handbook, CRC Press Inc. 1996. [28] S. Qian, D. Chen, Joint Time-Frequency Analysis. Methods and Applications, Prentice Hall PTR 1996. [29] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14 , 1201-1206 1981. [30] G.X. Liu, S. Rumyantsev, M.S. Shur, A.A. Balandin, Origin of 1/f noise in graphene multilayers: Surface vs. volume, Appl. Phys