Search Results

You are looking at 1 - 10 of 195 items for :

  • internal friction x
Clear All
Open access

R. Zachariasz, J.A. Bartkowska, D. Bochenek and P. Niemiec

References [1] R. Zachariasz, A. Zaryck a, J. Ilczuk, Determination of the lead titanate zirconate phase diagram by the measurements of the internal friction and Young’s modulus, Material Science - Poland 25, 781-789 (2007). [2] A. Puskar, Internal Friction of Materials, Cambridge International Science Publishing, Cambridge (2001). [3] C. Pawlaczy k, M. Olszow y, E. Markiewicz, E. Nogas- Cwikie l, J. Kułe k, Dielectric behaviour and pyroelectricity In SBN70-PVCcomposites, Phase Transitions 80, 177

Open access

W.B. Jiang, Q.P. Kong, L.B. Magalas and Q.F. Fang

References [1] T.S. Ke, Experimental evidence of the viscous behavior of grain boundaries in metals, Phys. Rev. 71 , 533-546 (1947). [2] W.B. Jiang, P. Cui, Q.P. Kong, Y. Shi, M. Winning, Internal friction peak in pure Al bicrystals with <100>tilt boundaries, Phys. Rev. B 72 , 174118 (2005). [3] Y. Shi, W.B. Jiang, Q.P. Kong, P. Cui, Q.F. Fang, M. Winning, Basic mechanism of grain-boundary internal friction revealed by a coupling model, Phys. Rev. B 73 , 174101 (2006). [4] W.B. Jiang, Q.P. Kong, D.A. Molodov, G. Gottstein, Compen- sation effect in

Open access

Mingjiang Jin, Qiang Li, Renlong Ying, Xianwen Lu, Xuejun Jin and Xifan Ding

of Gallium, Indium, and Tin in the vicinity of the crystallization temperature, Materials Science 41 , 271-274 (2005). [5] A.Q. Wu, L.J. Guo, C.S. Liu, E.G. Jia, Z.G. Zhu, Internal friction behavior of liquid Bi-Sn alloys, Physica B 369 , 51-55 (2005). [6] N.B. Morley, J. Burris, L.C. Cadwallader, M.D. Norbberg, GaInSn usage in the research laboratory, Rev. Sci. Instrum. 79 , 0561071-0561073 (2008). [7] Y. Katayama, T. Mizutani, W. Utsumi, M.Yamakata, K. Funakoshi, A first-order liquid-liquid phase transition in phosphorus, Nature, 403 , 170

Open access

J.R.S. Martins, R.O. Araújo, R.A. Nogueira and C.R. Grandini

Alloys ASM International, Ohio, 1989. [5] G. Lütjering, J.C. Williams, Titanium, 2nd Ed., Spinger, Berlin, 2007. [6] A.S. Nowick, B.S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, New York, 1972. [7] R. De Batist, Internal Friction of Structural Defects in Crystalline Solids, North-Holland, Amsterdam, 1972. [8] T.S. Kê, Internal Friction Theory in Solids, Science Press, Beijing, 2000. [9] A. Puskar, Internal Friction of Materials, Cambridge International Science

Open access

E. Łunarska, O. Chernyayaeva and R. Zachariasz

ceramiki typu PZT. PhD Thesis, Uniwersytet Śląski w Katowicach, Sosnowiec, 2004. Blanter M., Golovin I., Golovin S., Ilin A, Sarrak W.: Mekhanicheskaja spektroskopia metallicheskikh materialov, Moskva, Izd. Mezhdunar. Inzhenernoj Akademii, 1994. Koster W., Banger L., Evans M.: Z. Metallkunde , 47 (1956) pp. 564-570. Lunarska E., Zaborski S., Ilczuk J.: Internal friction measurements of the effects of the electrochemical-abrasive treatment of Ti alloy, Intern. J. Physico-chemical Mechanics of

Open access

X.P. Wang, L. Song, J. Hu, Y.P. Xia, Y. Xia, Y.X. Gao, L.C. Zhang, L.B. Magalas and Q.F. Fang

transition and conductivity improvement of tetragonal fast ionic electrolyte Li7La3Zr2O12, Solid State Ionics 253, 137-142 (2013). [10] Y.T. Wen, Z.G. Zhu, F.K. Xie, X.Q. Yang, K.H. Liu, J.Y. Tan, C.Y. Xie, Multifunctional internal friction apparatus, Proceeding of the 2nd National Conference on Internal Friction and Ultrasonic Attenuation in Solids, 133-134 (1988) (in Chinese). [11] X.P. Wang, Y.X. Gao, Y.P. Xia, Z. Zhuang, T. Zhang, Q.F. Fang, Correlation and mechanism of lithium ion diffusion with crystal structure in Li7La3Zr2O12

Open access

M.L. Nó, L. Dirand, A. Denquin and J. San Juan

, 2007. [18] I. Gutiérrez-Urrutia, M.L. Nó, E. Carreño-Morelli, B. Guisolan, R. Schaller, J. San Juan, High performance very low frequency pendulum, Mat. Sci. Eng. A 370, 435-439 (2004). [19] P. Simas, J. San Juan, R. Schaller, M.L. Nó, High-temperature mechanical spectrometer for internal friction measurements, Key Eng. Mater. 423, 89-95 (2010). [20] R.B. Perez-Saez, V. Recarte, M.L. Nó, J. San Juan, Anelastic contributions and transformed volume fraction during thermoelastic martensitic transformations, Phys. Rev. B 57

Open access

B. Zhang, H. Wagner, M. Büchsenschütz-Göbeler, Y. Luo, S. Küchemann, W. Arnold and K. Samwer

References [1] L.B. Magalas, Mechanical spectroscopy, internal friction and ultrasonic attenuation.Collection of works, Mater. Sci. Eng. A 521-522, 405-415 (2009). [2] H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Local elastic properties of a metallic glass, Nature Materials 10, 439-442 (2011). [3] F. Marinello, D. Passeri, E. Savio (Eds.), Acoustic Scanning Probe Microscopy, Springer, New York, 2013. [4] J.J. Vlassak, W.D. Nix, Indentation modulus of

Open access

R. Zachariasz, D. Bochenek and B. Bruś

. Czerwiec, J. Ilczuk, An application of measurements of amplitude internal friction dependences for tests of ceramic materials, Phys. Status Solidi A 205 , 1120-1125 (2008). [11] A. Zarycka, R. Zachariasz, J. Ilczuk, A. Chrobak, Internal friction related to the mobility of domain walls in sol-gel derived PZT ceramics, Materials Science – Poland 23 (1), 159-165 (2005). [12] R. Zachariasz, J.A. Bartkowska, D. Bochenek, P. Niemiec, Internal friction in the ferroelectric-ferromagnetic composites, Arch. Metall. Mater. 58 , 1327-1330 (2013) [13] D

Open access

M. Majewski and L.B. Magalas

spectroscopy, Sol. St. Phen. 137 , 15-20 (2008). [7] I. Yoshida, T. Sugai, S. Tani, M. Motegi, K. Minamida, H. Hayakawa, Automation of internal friction measurement apparatus of inverted torsion pendulum type, J. Phys. E: Sci. Instrum. 14 , 1201-1206 (1981). [8] L.B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Materials Science and Engineering A 521-522 , 384-388 (2009). [9] S. Amadori, E.G. Campari, A.L. Fiorini, R. Montanari, L. Pasquini, L. Savini