Search Results

You are looking at 1 - 10 of 85 items for :

  • electrodeposition x
Clear All
Open access

R. Kowalik

, Simultaneous oxidation and stripping for separating Se and Te from sulfur. Jom 48 (3), 50-52 (1996). [10] P.C. Nascimento, C.L. Jost, L.M. de Carvalho, D. Bohrer, A. Koschinsky, Voltammetric determination of Se(IV) and Se(VI) in saline samples-Studies with sea-water, hydrothermal and hemodialysis fluids. Anal Chim Acta 648 (2), 162-166 (2009). [11] N.M. Najafi, S. Seidi, R. Alizadeh, H. Tavakoli, Inorganic selenium speciation in environmental samples using selective electrodeposition coupled with electrothermal atomic absorption spectrometry. Spectrochimica Acta

Open access

T. Dobrovolska, I. Krastev, P. Żabiński, R. Kowalik and A. Zielonka

, 037101-1-037101-6 (2006). M. Orlik, Self-organization in nonlinear dynamical systems and its relation to the materials science, J. Solid State Electrochem. 13 , 245-261 (2009). A.S. Mikhailov, K. Showalter, Physic Reports 425 , 79-194 (2006). E. Raub, A. Schall, Silber-Indium-Legierungen, Z. Metallkd. 30 , 149-151 (1938). T.S. Dobrovolska, I. Krastev, A. Zielonka, Effect of the electrolyte composition on in and Ag-In alloy electrodeposition from cyanide

Open access

R. Kowalik

Electroanalytical Chemistry 300 , 543-61 (1991). [9] R. Kowalik, K. Fitzner, About the conditions of zinc selenide electrodeposition from aqueous solutions, Metall. Foundry Eng. 30 (2004). [10] R. Kowalik, P. Zabiński, K. Fitzner, Electrodeposition of ZnSe, Electrochimica Acta 53 , 6184-90 (2008). [11] R. Kowalik, K. Fitzner, Analysis of the mechanism for elec-trodeposition of the ZnSe phase on Cu substrate, Journal of Electroanalytical Chemistry 633 , 78-84 (2009). [12] J. Mech, R. Kowalik, A. Podborska, P. Kwolek, K. Szaciłows-ki, Arithmetic device based on multiple

Open access

N. Dimitrova, T. Dobrovolska and I. Krastev

Electrochemisrty of the Elements, J. A. Bard (Ed.), Marcel Dekker Inc., New York and Basel, 1973. [18] Spravochnik khimika, Khimiya Moskva, Leningrad, 1965. [19] L. Pospisil, R. DeLevie, J Electroanal Chem 25 , 245 (1970). [20] M.T.M. Koper, J.H. Sluyters, J. Electroanal. Chem 303, 65 (1991). [21] T.S. Dobrovolska, K. Fitzner, Arch. Metall. Mater. 50, 1017 (2005). [22] A. Brenner, Electrodeposition of Alloys. Principles and Practice, 1, Academic Press, New York, London, 1963. [23] M

Open access

V. V. Malysheva, A.I. Gabb, D. B. Shakhnina, A. D. Pisanenkoa, M. Ambrovac, V. Danielikc and P. Fellnerc

and Boron Carbides Interfaces with Ionic Melts), Poverkhnost’. Fizika, Khimiya, Mekhanika 1999(5/6): 153. Malyshev VV (2007) Teoreticheskiye osnovy I prakticheskaya realizatsiya elektroosazhdeniya molibdena iz ionnykh rasplavov (Theoretical Backgrounds and Practical Realization of Molybdenum Electrodeposition from Ionic Melts), Teor. Osnovy Khim. Tekhnol. 41(3): 302. Malyshev VV, Gab AI, Gaune-Escard M (2008) Initial stages of nucleation of molybdenum and tungsten carbide phases in tungstate-molybdate-carbonate melts, J. Applied

Open access

Tatiana Sadyrbaeva

.memsci.2011.04.042 [9] B. A. Purin, “Vlianie elektricheskogo polia na membrannuiu ekstrakciu veshchestv,” Khimicheskaya tehnologia , no. 9, pp. 22–25, 2001. [10] T. Z. Sadyrbaeva, “Liquid membrane system for extraction and electrodeposition of silver(I),” Journal of Electroanalytical Chemistry , vol. 648, no. 2, pp. 105–110, Oct. 2010. https://doi.org/10.1016/j.jelechem.2010.08.006 [11] T. Z. Sadyrbaeva, “Recovery of cobalt(II) by the hybrid liquid membrane – electrodialysis – electrolysis process,” Electrochimica Acta , vol. 133, pp. 161–168, Jul

Open access

A.H. Al-Azzawi, J. Sytchev and P. Baumli

Abstract

In this paper the electrodeposition of boron on the surface of cast iron as a coating is applied to increase the hardness and protect the substrate against abrasive wear. The boron containing coating was synthesized by electrodeposition process from a NaCl-KCl (1:1 mol)-10 w%NaF-10w% KBF4 molten salt. The effect of electrolysis parameters (temperature and time) on the hardness is presented; the current density varied in the range −37 – −4.5 mA/cm2, allowing perfect coverage of and respect for dimensions. The electrochemical process was carried out at different temperatures (750°C-900°C) and for different periods of time (5-10 hours). Depending on the current density and duration of electrolysis, the deposits consist of FeB or Fe2B. Microhardness measurements across the boride layer indicated very high hardness values (between 1600 and 2100 HV0.05). The structure of the boride layer is linked to its boron content and thermal history: as-deposited coatings present very small grain sizes and can be considered as nearly amorphous.

Open access

K. Mech, P. Zabinski, M. Mucha and R. Kowalik

References [1] A. Brenner, Electrodeposition of Alloys, Academic Press, New York (1963). [2] P.R. Zabinski, K. Mech, R. Kowalik, Co-Mo and Co-Mo-C alloys deposited in a magnetic field of high intensity and their electrocatalytic properties, Archives of Metallurgy and Materials 57, 127 (2012). [3] P. Zabinski, M. G órski, R. Kowalik, Influence of Superimposed External Magnetic Field onto Electrodeposition of Co-P Alloys for Hydrogen Evolution, Archives of Metallurgy and Materials 54, 1157 (2009

Open access

E. Rudnik, G. Włoch and A. Czernecka

References [1] A. Brenner, Electrodeposition of alloys. Vol.II, Academic Press, New York-London, 315 (1963). [2] F.A. Lowenheim, W.W. Sellers, F.X. Carlin, J. Electrochem. Soc. 105(6), 338 (1958). [3] S.A.M. Refaey, F. Taha, T.H.A. Hasanin, Appl. Surf. Sci. 227, 416 (2004). [4] B. Subramanian, S. Mohan, S. Jayakrishnan, J. Appl. Electrochem. 37, 219 (2007). [5] S.K. Jalota, Trans. Inst. Met. Fin. 1, 319 (2000). [6] D. Zhang, C. Yang, J. Dai, J. Wen, L. Wang, C

Open access

E. Bełtowska-Lehman, A. Góral and P. Indyka

Electrodeposition and Characterization of Ni/Al2O3 Nanocomposite Coatings

The composite coatings containing of nanocrystalline Ni matrix and hard nano-sized γ-Al2O3 were electrodeposited in a system with a rotating disk electrode. The bath composition (nickel salts and buffer concentration, presence of surface-active agents and inert particles) influence on kinetics of Ni electrodeposition as well as on structural properties (morphology, phase composition, texture, residual stresses) and microhardness of Ni/Al2O3 coatings has been investigated. SEM and TEM studies show more uniform arrangement of Al2O3 particles in the matrix, however a tendency to agglomeration is observed. Surfactant application to a saccharine containing bath effectively improves the dispersion of nanoparticles into the nickel matrix. The addition of Al2O3 particles results in decrease of the average Ni crystallite size. The introduction of additive into electrolyte solution resulted in change of stress character of composite coatings (from tensile to compressive). The microhardness of Ni matrix was enhanced (about 40%) due to incorporation of ceramic particles.