Search Results

You are looking at 1 - 10 of 60 items for :

  • copper matrix composites x
Clear All
Open access

B. Juszczyk, J. Kulasa, W. Malec, Sz. Malara, M. Czepelak and L. Ciura

, E. Fuente s, O. Marana, V. Ruusil a, Tribological behaviour of bronze alloys with solid lubricants, Key Eng. Mater. 527, 205-210 (2013). [5] B. Juszczyk, J. Kulasa, W. Male c, S. Malara, Ł. Wierzbicki, B. Cwolek, L. Ciura, Study on the production of copper matrix composites using lubricating phase particles, Proceedings of the Euro PM2012 Congress, p. 181-186. [6] J. Wieczorek, J. Sleziona, Tribological properties of silver matrix composites, Archives of Foundry Engineering 7, 181-185 (2007). [7] J. Myalski

Open access

B. Juszczyk, J. Kulasa, S. Malara, M. Czepelak, W. Malec, B. Cwolek and Ł. Wierzbicki

). [12] P.K. Rohatgi, J. Sobczak, N. Sobczak, J.K. Kim, Cast copper matrix composites reinforced with graphite particles (Odlewane kompozytyoosnowie miedzi zbrojone czasteczkami grafitu), Rudy Metale 9, 380 (1997). [13] P.K. Rohatgi, Development of lead-free copper alloy-graphite castings, U.S. Department of Energy - Final Report DOE/ID/13236-4. [14] M. Kestursatya, J.K. Kim, P.K. Rohatgi, Wear performance of copper-graphite composite and leader copper alloy, Mater. Sci. Eng. A339, 150-158 (2003). [15] J.K. Kim, P

Open access

J.W. Kaczmar, K. Granat, K. Naplocha, A. Kurzawa, E. Grodzka and B. Samociuk

Materials . 31(B), 297-305. DOI : 10.1007/s11663-000-0048-5. [7] Zhou, G. & Ding, H. & Zhang, Hui Y. D. & Liu, A. (2009). Fretting behavior of nano-Al2O3 reinforced copper matrix composites prepared by coprecipitation. Metalurgija . 15(3). 169-179. [8] Chen, G. Sun, G-X. & Zhu, Z-G. (1999). Study on reactionprocessed Al-Cu/alpha-Al2O3(p) composites. Materials Science and Engineering. 265(A), 197-201. [9] Kelly, A. M. & Bomford, M. J. (1971). The tensile strength of copper/tungsten fibre-reinforced composites. Fibre

Open access

M. Madej

- Pietro, M. M das Neves, Sinterability study of PM M2 and T15 HSS reinforced with tungsten and titanium carbides 36, 55-66 (1993). [5] M. Madej, J. Leżański, Copper infiltrated high speed steel based composites, Archives of Metallurgy and Materials 50, 4, 871-877 (2005). [6] M. Madej, J. Leżański, The structure and properties of copper infiltrated HSS based, Archives of Metallurgy and Materials 53, 3, 839-845 (2008). [7] K. Żaba, The influence of temperature and time of exhibition onachange of Al-Si coating thickness and

Open access

M. Chmielewski, K. Pietrzak, A. Strojny-Nędza, D. Jarząbek and S. Nosewicz

Abstract

This paper analyses the technological aspects of the interface formation in the copper-silicon carbide composite and its effect on the material’s microstructure and properties. Cu-SiC composites with two different volume content of ceramic reinforcement were fabricated by hot pressing (HP) and spark plasma sintering (SPS) technique. In order to protect SiC surface from its decomposition, the powder was coated with a thin tungsten layer using plasma vapour deposition (PVD) method. Microstructural analyses provided by scanning electron microscopy revealed the significant differences at metal-ceramic interface. Adhesion force and fracture strength of the interface between SiC particles and copper matrix were measured. Thermal conductivity of composites was determined using laser flash method. The obtained results are discussed with reference to changes in the area of metal-ceramic boundary.

Open access

A. Strojny-Nędza, K. Pietrzak, M. Teodorczyk, M. Basista, W. Węglewski and M. Chmielewski

Abstract

This paper describes the process of obtaining Cu-SiC-Cu systems by way of spark plasma sintering. A monocrystalline form of silicon carbide (6H-SiC type) was applied in the experiment. Additionally, silicon carbide samples were covered with a layer of tungsten and molybdenum using chemical vapour deposition (CVD) technique. Microstructural examinations and thermal properties measurements were performed. A special attention was put to the metal-ceramic interface. During annealing at a high temperature, copper reacts with silicon carbide. To prevent the decomposition of silicon carbide two types of coating (tungsten and molybdenum) were applied. The effect of covering SiC with the aforementioned elements on the composite’s thermal conductivity was analyzed. Results were compared with the numerical modelling of heat transfer in Cu-SiC-Cu systems. Certain possible reasons behind differences in measurements and modelling results were discussed.

Open access

P. Kwaśniewski, G. Kiesiewicz, T. Knych, A. Mamala, M. Gniełczyk, A. Kawecki, B. Smyrak, W. Ściężor and E. Smaga-Sieja

. B 30 (3), (2012). [10] S.R. Bakshi, D. Lahiri and A. Agarwal, Carbon nanotube reinforced metal matrix, composites – a review, International Materials Reviews (2010). [11] T.H. Nayfeh, A.M. Wiederholt, Nano-engineered ultraconductive nanocomposite copper wire, Patent nr. US 2012/0152480 [12] G.A. Lopez, E.J. Mittemeijer, The solubility of C in solid Cu, Scripta Materialia 51, (2004). [13] W.M. Daoush, Processing and characterization of CNT/Cu nanocomposites by powder technology, Power Metallurgy and Metal Ceramics 47 , Nos.9-10, (2008

Open access

J. W. Kaczmar, K. Granat, A. Kurzawa and E. Grodzka

nanostructured eutectic network in α-Al2O3 reinforced Al-Cu alloy matrix composite, Acta Materialia. 51, 3445-3454. [5] Górny Z. & Sobczak J. (2005). Modern casting materials based on non-ferrous metals. ZA-PIS. (In Polish). [6] Katsuhito Y. & Hideaki M. (2004). Thermal properties of diamond/copper composite material. Microelectronics Reliability. Vol. 44, 303-308. [7] CRC Materials Science and Engineering Handbook. pp. 281-421. [8] Gundrum B. C., Cahill D. G. & Averback R. S. (2005) Thermal conductance of metal

Open access

R. Sathiskumar, N. Murugan, I. Dinaharan and S.J. Vijay

References [1] N.B. Dhokey, R.K. Paretkar, Study of wear mechanisms in copper-based Si Cp (20% by volume) reinforced composite, Wear 265, 117-133 (2008). [2] A.N. Attia, Surface metal matrix composites, Mater. Des. 22, 451-457 (2001). [3] M.ST. Weglowski, A. Pietras, Friction stir processing - analysis of the process, Arch. Metall. Mater. 56, 779-788 (2011). [4] R.S. Mishra, Z.Y. Ma, I. Charit, Friction stir processing: a novel technique for fabrication of surface composite, Mater. Sci. Eng. A

Open access

W. Głuchowski, Z. Rdzawski, J. Domagała-Dubiel and J. Sobota

-ping DONG, Liang MENG, Jia-bin LIU, Microstructure and hardness of Cu-12% Fe composite at different drawing strains, Applied Physics & Engineering 15/2, 149-156 (2014). [7] Z. Rdzawski, W. Głuchowski, J. Stobrawa, J. Sobota, Effect Of Rare-Earth metals addition on microstructure and properties of selected copper alloys, Archives of Metallurgy and Materials 59/2, 641-648 (2014). [8] M. Abbasi, A. Karimi Taheri, M.T. Salehi, Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process, Journal of Alloys and