Search Results

You are looking at 1 - 3 of 3 items for :

  • commutative residuated lattice x
Clear All
Open access

Ivan Chajda and Helmut Länger

. Chajda and H. Länger, When does a semiring become a residuated lattice ?, Asian-Eur. J. Math. 9 (2016) 1650088 (10 pages). doi:10.1142/S1793557116500881 [6] R.P. Dilworth, Non-commutative residuated lattices , Trans. Amer. Math. Soc. 46 (1939) 426–444. doi:10.2307/1989931 https://www.jstor.org/stable/1989931 . [7] N. Galatos, P. Jipsen, T. Kowalski and H. Ono, Residuated Lattices: An Algebraic Glimpse at Substructural Logics (Elsevier, Amsterdam, 2007). ISBN 978-0-444-52141-5. [8] J.S. Golan, The Theory of Semirings with Applications in

Open access

Arsham Borumand Saeid and Roghayeh Koohnavard

References [1] R. Belohlavek, Fuzzy relational systems , Found. Prin, Kluwer Acad, Publ, New York, (2002). [2] R. Bignall, J. Leech, Skew Boolean algebras and discriminator varieties , Algebra Univ, 33(3) (1995), 387-398. [3] G. Birkhoff, Lattice theory , Amer Math. Soc, 25 (1940). [4] T. S. Blyth, Lattices and ordered algebraic structures , Springer Sci. Busi. Media, (2006). [5] S. Bonzio, I. Chajda, Residuated relational systems , Asian-Eur. J. Math, 11(1) 1850024 (14pp) (2018). [6] I. Chajda, J. Krnavek, Skew

Open access

Dana Piciu, Christina Theresia Dan and Florentina Chirteş

, MTL-filters, divisible filters, BL-filters and regular filters in residuated lattices , Iranian Journal of Fuzzy Systems 13(1) (2016) 145-160. [6] L. Ciungu, Non-commutative Multiple - Valued Logic Algebras , Springer, 2013. [7] R. Dilworth, Non-commutative residuated lattices , Trans. Amer. Math. Soc. 46 (1939) 426-444. [8] N. Galatos, P. Jipsen, T. Kowalski, H. Ono, Residuated lattices: an algebraic glimpse at structural logic , Studies in logic and the foundation of math., Vol. 151, Elsevier Science, 2007. [9] P. Hájek, Metamathematics