Search Results

You are looking at 1 - 10 of 180 items for :

  • blood-brain barrier x
Clear All
Open access

Jernej Avsenik, Sotirios Bisdas and Katarina Surlan Popovic

References 1. Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD. Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 2006; 1: 223-36. 2. Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005; 57: 173-85. 3. Kaur C, Ling EA. Blood brain barrier in hypoxic-ischemic conditions. Curr Neurovasc Res 2008; 5: 71-81. 4. Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an

Open access

I. Širochmanová, Ľ. Čomor, E. Káňová, I. Jiménez-Munguía, Z. Tkáčová and M. Bhide

REFERENCES 1. Abbott, N. J., Friedman, A., 2012: Overview and introduction: The blood-brain barrier in health and disease. Epilepsia , 53, 1—6. 2. Abbott, N. J., 1992: Comparative physiology of the bloodbrain barrier. In Bradbury, M. W. B. (Ed.): Physiology and Pharmacology of the Blood-Brain Barrier , Springer Berlin Heidelberg, 371—396. 3. Abbott, N. J., Patabendige, A. A. K., Dolman, D. E. M., Yusof, S. R., Begley, D. J., 2010: Structure and function of the blood-brain barrier. Neurobiol. Dis. , 37, 13—25. 4. Abbott, N. J

Open access

Katarzyna Nierwińska, Elżbieta Malecka, Małgorzata Chalimoniuk, Aleksandra Żebrowska and Józef Langfort

References Abbot N. J. (2002) Astrocyte-endothelial interactions and blood-brain barrier permeability. J Anat. 200, 629-638. Abbott N. J. (2005) Dynamics of the CNS barriers: evolution, differentiation, and modulation. Cell. Mol. Neurobiol. 25, 5-23. Abbott N. J. (1998) In: Introduction to the Blood-Brain Barrier: Methodology and Biology. Ed. Pardridge W. M., Cambridge Univ. Press, Cambridge, 345-353. Ballabh P., Braun A., Nedergaard M. (2004) The blood-brain

Open access

Shirley Sharabi, Bor Kos, David Last, David Guez, Dianne Daniels, Sagi Harnof, Yael Mardor and Damijan Miklavcic

repetition frequency. As a function of the induced electrical field, electric pulses can either: reversibly permeabilize the cell membrane (reversible EP) or permeabilize the cell membrane in a manner that leads to cell death (irreversible EP). 4 It was recently demonstrated that when applying EP to brain tissue it also induces reversible disruption of the blood-brain barrier (BBB). 5 – 7 Both irreversible EP (IRE), and reversible EP combined with chemotherapy, also known as electrochemotherapy (ECT), are emerging as new treatment techniques for solid tumors. 3 , 8 – 16

Open access

Z. Tkáčová, E. Káňová, I. Jiménez-Munguía, Ľ. Čomor, I. Širochmanová, K. Bhide and M. Bhide

REFERENCES 1. Abbott, N. J., Ronnback, L., Hansson, E., 2006: Astrocyteendothelial interactions at the blood-brain barrier. Nat. Rev. Neurosci. , 7, 41—53. 2. Archer, D. P., Ravussin, P. A., 1994: Role of blood-brain barrier in cerebral homeostasis. Ann. Fr. Anesth. Reanim. , 13, 57—61. 3. Badger, J. L., Stins, M. F., Kim, K. S., 1999: Citrobacter freundii invades and replicates in human brain microvascular endothelial cells. Infect. Immunol. , 67, 4208—4215. 4. Berge, A., Sjobring, U., 1993: PAM, a novel plasminogenbinding protein

Open access

Joanna Bielewicz, Jacek Kurzepa, Elżbieta Czekajska-Chehab, Piotr Kamieniak, Beata Daniluk and Halina Bartosik-Psujek

Heart Circ Physiol. 2011;301:H730-6. 11. Kuhlmann CR, Librizzi L, Closhen D, et al. Mechanisms of C-reactive protein-induced blood-brain barrier disruption. Stroke. 2009;40:1458-66. 12. Pepys MB, Hischfield GM, Tennent GA, et al. Targeting C-reactive protein for treatment of cardiovascular disease. Nature. 2006;440:1217-21. 13. Gill R, Kemp JA, Sabin C, Pepys MB. Human C-reactive protein increases cerebral infarct size after middle cerebral artery occlusion in adult rats. J Cereb Blood Flow Metab. 2004

Open access

Nyúl-Tóth Ádám, Mészáros Ádám, Győri Fanni, Wilhelm Imola and István A. Krizbai

Irodalom 1. Abbott, N.J., L. Ronnback, and E. Hansson, Astrocyteendothelial interactions at the blood-brain barrier. Nat Rev Neurosci, 2006. 7(1): p. 41-53. 2. Wilhelm, I., C. Fazakas, and I.A. Krizbai, In vitro models of the blood-brain barrier. Acta Neurobiol Exp (Wars), 2011. 71(1): p. 113-28. 3. Bauer, H.C., et al., “You Shall Not Pass”-tight junctions of the blood brain barrier. Front Neurosci, 2014. 8: p. 392. 4. Nagy, I., et al., Membrane Transporters in Physiological Barriers of Pharmacological Importance. Curr Pharm Des, 2016. 22

Open access

Harish Dureja and Anil Madan

References K. Rose, L. H. Hall and L. B. Kier, Modeling blood-brain barrier partitioning using the electrotopological state, J. Chem. Inf. Comput. Sci. 42 (2002) 651-666; DOI: 10.121/ci010127n. D. E. Clark, Rapid calculation of polar molecular surface and its application to the prediction of transport phenomena. 2. Prediction of blood-brain barrier penetration, J. Pharm. Sci. 88 (1999) 815-821; DOI:10.1021/js980402t. J. M. Luco, Prediction of the brain-blood distribution of a

Open access

Hanghui Wang, Yixin Song, Dingjun Hao and Lianfang Du

postconditioning may attenuate ischaemia- reperfusion injury in the murine hindlimb through adenosine receptor activation. Eur J Vasc Endovasc Surg. 2010; 40:804-9. 6. Kago T, Takagi N, Date I, Takenaga Y, Takagi K, Takeo S. Cerebral ischemia enhances tyrosine phosphorylation of occludin in brain capillaries. Biochem Biophys Res Commun. 2006; 339:1197-203. 7. Jiao H, Wang Z, Liu Y, Wang P, Xue Y. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J Mol Neurosci

Open access

Tatjana Filipovic, Katarina Surlan Popovic, Alojz Ihan and David Bozidar Vodusek

and a higher concentration of TNF- α . The two »control hyperperfusion« patients had the highest concentrations of TNF- α and other proinflammatory cytokines - IL-6, IL-12, IFN- γ , IL-1Ra and hsCRP. It is tempting to speculate that »hyperperfusion« and »control hyperperfusion« patients had the highest intensity of brain inflammation but further studies will have to check this hypothesis. There are experimental 38 and clinical 24 evidences that long lasting blood-brain barrier disruption is linked to epileptogenesis. Increased postictal blood levels of