Search Results

You are looking at 1 - 10 of 91 items for :

  • TiO2 nanotubes x
Clear All
Open access

Mohamed Thabit, Huiling Liu, Jian Zhang and Bing Wang

LITERATURE CITED 1. Chen, Q., Liu, H., Xin, Y., Cheng, X., Zhang, J., Li, J., Wang, P. & Li, H. (2013). Controlled anodic growth of TiO 2 nanobelts and assessment of photoelectrochemical and photocatalytic properties. Electrochim. Acta. 99, 152–160. DOI: 10.1016/j.electacta.2013.03.032. 2. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Construction of N, S codoped TiO 2 NCs decorated TiO 2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta. 103, 134–142. DOI: 10.1016/j

Open access

R. Drunka, J. Grabis, Dz. Jankoviča and A. Patmalnieks

References Hashimoto, K., Irie, H., Fujishima, A. (2005). TiO 2 Photocatalysis: A Historical Overview and Future Prospects. Jpn. J. Appl. Phys., 44 (12), 8269-8285. Adachi, M., Murata, Y., Harada, M., Yoshikawa, S. (2000). Formation of titania nanotubes with high photocatalytic activity. Chem. Lett., 29 (8), 942-943. Jitputti, J., Pavasupree, S., Suzuki, Y., Yoshikawa, S. (2008). Synthesis of TiO 2 nanotubes and its photocatalytic activity for H 2 evolution. Jpn. J. Appl

Open access

Dawei Gao, Zhenqian Lu, Chunxia Wang, Weiwei Li and Pengyu Dong

Nanotube Arrays Modified with Ag and Pt Nanoparticles. Electrochim. Acta, 121, 194-202. [4] Lan C. S., Leong K. H., Ibrahim S., Saravanan P. (2014) Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A, 2, 5315-5322. [5] Yu D., Zhu X., Xu Z., Zhong X., Gui Q., Song Y. (2014) Facile Method to enhance the adhesion of TiO2 nanotube arrays to Ti substrate. ACS App.l Mater. Inter., 6, 8001-8005. [6] Park H., Lee J., Park T., Lee S., Yi W. (2015). Enhancement

Open access

Mohammad Reza Farahani, Muhammad Kamran Jamil and Muhammad Imran

studied in material sciences. Titania nanotubes were systematically synthesized during the last 10-15 years using different methods and carefully studied as prospective technological materials. Since the growth mechanism for TiO 2 nanotubes is still not well defined, their comprehensive theoretical studies attract enhanced attention. The TiO 2 sheets with a thickness of a few atomic layers were found to be remarkably stable. In this paper, we compute the vertex PI index of the Titania nanotubes. For further results we refer [ 12 – 14 ]. 2 Main Results The 2

Open access

Jong-Oh Kim, Chrul-Hee Cho and Won-Youl Choi

References [1] RACHEL A., SUBRAHMANYAM M., BOULE P., Appl.Catal. B-Environ., 37 (2002), 301. [2] DIONYSIOU D.D., SUIDAN M.T., BEKOU E., BAUDIN I., LAIN J.-M., Appl. Catal. B-Environ., 26 (2000), 153. [3] YAMASHITA H., HARADA M., MISAKA J., TAKEUCHI M., NEPPOLIAN B., ANPO M., Catal. Today, 84 (2003), 191. [4] SAKTHIVEL S., SHANKAR M., PALANICHAMY M., ARABINDOO B., MURUGESAN V., J. Photoch. Photobio.A, 148 (2002), 153. [5] CHEN Y., WANG K., LOU L., J. Photoch. Photobio. A, 163 (2004

Open access

A. Roguska, A. Belcarz, P. Suchecki, M. Andrzejczuk and M. Lewandowska

References [1] A. G. Gristina,Clin.Orthop.Relat. R 298,106 (1994). [2] A. D. Hanssen, J. A. Rand, J. Bone Joint Surg. 80A,910 (1998). [3] M. Sygnatowicz, K. Keyshar, A. Tiwari, JOM 62, 65 (2010). [4] [4] C. K. Popat, M. Eltgroth, J. T. La Tempa, A. C. Grimes,A. T. Desai, Biomaterials 28, 4880 (2007). [5] [5] P. H. Chua, K. G. Neoh, E. T. Kang, W. Wang, Biomaterials 29, 1412 (2008). [6] Y. Z. Wan, G.Y. Xiong, H. Liang, S. Raman, F. He, Y. Huang, Appl. Surf. Sci.253

Open access

A. Roguska, A. Belcarz, P. Suchecki, M. Andrzejczuk and M. Lewandowska

References [1] A.G. Gristina, Clin.Orthop.Relat. R 298, 106 (1994). [2] A.D. Hanssen, J.A. Rand, J. Bone, Joint Surg. 80A, 910 (1998). [3] M. Sygnatowicz, K. Keyshar, A. Tiwari, JOM 62, 65 (2010). [4] C.K. Popat, M. Eltgroth, J.T. La Tempa, A.C. Grimes, A.T. Desai, Biomaterials 28, 4880 (2007). [5] P.H. Chua, K.G. Neoh, E.T. Kang, W. Wang, Biomaterials 29, 1412 (2008). [6] Y.Z. Wan, G.Y. Xiong, H. Liang, S. Raman, F. He, Y. Huang, Appl. Surf. Sci. 253, 9426 (2007

Open access

S. Sobieszczyk

Problems of Mineral Processing 39 (2005) 149-154. Variola F., Yi J-H., Richert L., Wuest J.D., Rosei F., Nanci A.: Tailoring the surface properties of Ti6Al4V by controlled chemical oxidation. Biomaterials 29 (2008) 1285-1298. Jonasova L., Muller F.A., Helebrant A., Strnad J., Greil P.: Biomimetic apatite formation on chemically treated titanium. Biomaterials 25 (2004) 1187-1194. Maiyalagan T., Viswanathan B., Varadaraju U.V.: Fabrication and characterization of uniform TiO 2 nanotube

Open access

Krzysztof Cendrowski

LITERATURE CITED 1. Carp, O., Huisman, C.L. & Reller, A. (2004) Photoinduced reactivity of titanium dioxide. Solid State Chem. 32, 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001. 2. Ma, Y. & Yao, J.N. (1998) Photodegradation of Rhodamine B catalyzed by TiO 2 thin films. J. Photochem. Photobiol. A 116, 167–170. DOI: 10.1016/S1010-6030(98)00295-0. 3. Stylidi, M., Kondarides, D.I. & Verykios, X.E. (2003) Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO 2 suspensions. Appl. Catal. B 40, 271–286. DOI: 10

Open access

Mohamed Thabit, Huiling Liu, Jian Zhang and Bing Wang

References 1. Chen, Q., Liu, H., Xin, Y., Cheng, X., Zhang, J., Li, J., Wang, P. & Li, H. (2013). Controlled anodic growth of TiO2 nanobelts and assessment of photoelectrochemical and photocatalytic properties. Electrochim. Acta, 99, 152-160. DOI: 10.1016/j.electacta.2013.03.032. 2. Cheng, X., Liu, H., Chen, Q., Li, J. & Wang, P. (2013). Construction of n, s codoped TiO2 ncs decorated TiO2 nano-tube array photoelectrode and its enhanced visible light photocatalytic mechanism. Electrochim. Acta, 103, 134-142. DOI: 10.1016/j