Search Results

You are looking at 1 - 10 of 81 items for :

  • Thermoelectric x
Clear All
Open access

Adam Ruciński and Artur Rusowicz

exchanger in the real ventilation systems. In: Proc. ICEE-2011 Int. Conf. on Environmental Engineering Selected Papers; DOI:10.3846/enviro.2014.259 [4] Jaworski M., Bednarczyk M., Czachor M.: Experimental investigation of thermoelectric generator (TEG) with PCM module. Appl. Therm. Eng. 96(2016), 527-533. DOI: 10.1016/j.applthermaleng.2015.12.005. [5] Rusowicz A., Grzebielec A., Ruciński A.: Energy conservation in buildings using refrigeration units. ICEE-2014 Int. Conf. on Environmental Engineering Selected Papers.

Open access

Taichao Su, Hongyu Zhu, Hongan Ma, Shangsheng Li, Meihua Hu, Xiaolei Li, Fengrong Yu, Yongjun Tian and Xiaopeng Jia

[1] Goldsmid H., Electronic Refrigeration, Pion, London, 1986. [2] Rowe D., Bhandari C., Modern Thermoelectrics, Reston Publishing, Reston, VA, 1983. [3] Disalvo F., Science, 285 (1999), 703. [4] Caillat T., Fleurial J., Borshchevsky A., J. Phys. Chem. Solids, 58 (1997), 1119. [5] Zhu T., Zhao X., Yan M., Hu S., Li T., Chou B., Mater. Lett

Open access

He Zhang, Haiyan Wang, Hongyu Zhu, Hongtao Li, Taichao Su, Shangsheng Li, Meihua Hu and Haotian Fan

1 Introduction Thermoelectric materials capable of converting energy between heat and electricity are currently attracting significant attention as a part of a search for sustainable alternative energy sources [ 1 - 6 ]. The efficiency of thermoelectric devices is strongly associated with the dimensionless figure of merit ZT defined as: Z T = ( S 2 σ / κ ) T $$ZT = ({S^2}\sigma /\kappa )T$$ (1) where T is temperature [K], S is Seebeck coefficient, σ is electrical conductivity, and κ is total thermal conductivity. Therefore, a combination of a

Open access

Iván Rivera, Aldo Figueroa and Federico Vázquez

REFERENCES 1. G. J. Snyder, J. P. Fleurial, T. Caillat, R. Yang, and G. Chen, Supercooling of peltier cooler using a current pulse, Journal of Applied Physics , vol. 92, no. 1564, 2002. 2. M. P. Gupta, M. Sayer, S. Mukhopadhyay, and S. Kumar, On-chip peltier cooling using current pulse, in 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm) , pp. 1–7, 2010. 3. M. P. Gupta, M.-H. Sayer, S. Mukhopadhyay, and S. Kumar, Ultrathin thermoelectric devices for on-chip peltier cooling, in IEEE

Open access

Hao-Peng Song and Kun Song

References [1] Disalvo, F. J. Thermoelectric Cooling and Power Generation. Science, 285 (1999), 703-706. [2] Yang, J. H., T. Caillat. Thermoelectric Materials for Space and Automotive Power Generation. MRS Bulletin, 31 (2006), 224229. [3] Narducci, D. Do We Really Need High Thermoelectric Figures of Merit? A Critical Appraisal to the Power Conversion Efficiency of Thermoelectric Materi- als. Appl. Phys. Lett., 99 (2011), 102-104. [4] Tritt, T. M., M. A. Subramanian. Thermoelectric Materials

Open access

S.S. Kim, I. Son and K.T. Kim

. Sci. Lett. 9 , 810-812 (1990). [7] D. Vasilevskiy, F. Roy, E. Renaud, R.A. Masut, S. Turenne, Proc. 25th Int. Conf. on Thermoelectrics, Vienna, Austria, 666-669 (2006). [8] T.Y. Lin, C.N. Liao, Albert T. Wu, J. Electron. Mater. 41 (1), 153-158 (2012). [9] S.W. Chen, C.N. Chiu, Scripta Mater. 56 , 97-99 (2007).

Open access

H.-S Kim, M. Babu and S.-J. Hong

REFERENCES [1] T.M. Tritt, Science 283 , 804 (1999). [2] B.C. Sales, D. Mandrus, E. Siivola, T. Colpitts, B. Q’Quinn, nature, 413 , 597 (2001). [3] F. Ioffe, Semiconductor Thermoelements and Thermoelectric Refrigeration, P. 39, Infosearch, London (1957). [4] M.S. Dresselhaus, G. Chen, M.Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J.P. Fleurial, P. Gogna, Adv. Mater. 19 , 1043 (2007). [5] B.C. Slaes, D. Mandrus, R.K. Williams, Science 272 , 1325 (1996). [6] B.A. Cook, M.J. Kramer, X. Wei, J.L. Harringa, J. Appl. Phys. 101

Open access

R. Zybała, K. Mars, A. Mikuła, J. Bogusławski, G. Soboń, J. Sotor, M. Schmidt, K. Kaszyca, M. Chmielewski, L. Ciupiński and K. Pietrzak

REFERENCES [1] D.M. Rowe ed.: CRC Handbook of Thermoelectrics, Ch 3 (CRC Press, 1995). [2] R. Zybała, M. Schmidt, K. Kaszyca et al., J. Electron. Mater. 45 (10), 5223-5231 (2016). [3] R. Zybala, K.T. Wojciechowski, AIP Conf. Proc. 1449, 393 (2012) doi: 10.1063/1.4731579. [4] M.J. Kruszewski, R. Zybala, L. Ciupinski, et al., J. Electron. Ma ter. 45 (3), 1369 (2016). [5] P. Nieroda, R. Zybala, K.T. Wojciechowski, AIP Conf. Proc. 1449, 199 (2012), doi: 10.1063/1.4731531. [6] H. Zhang, C.X. Liu, X.L. Qi, et al., Nat. Phys. 5

Open access

Haotian Fan, Taichao Su, Hongtao Li, Youjin Zheng, Shangsheng Li, Meihua Hu, Hongan Ma and Xiaopeng Jia

References [1] DISALVO F., Science, 285 (5428) (1999), 703. [2] GOLDSMID H., Electronic Refrigeration, Pion, London, 1986, p. 10. [3] ROWE D., CRC Handbook of Thermoelectrics, CRC Press, New York, 1995. [4] BADDING J., Annu. Rev. Mater. Res., 28 (1998), 631. [5] ZHU P., IMAIY., ISODA Y., SHINOHARA Y., JIA X., REN G., ZOU G., Mater. Trans., 45 (11) 2004, 3102. [6] ZHU P., JIA X., CHEN H., CHEN L., LI D., GUO W., MA H., REN G., ZOU G., Chinese J. High Pressure Phys

Open access

Lingjiao Kong, Hongan Ma, Yuewen Zhang, Xin Guo, Bing Sun, Binwu Liu, Haiqiang Liu, Baomin Liu, Jiaxiang Chen and Xiaopeng Jia


N-type polycrystalline skutterudite compounds Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 with the bcc crystal structure were synthesized by high pressure and high temperature (HPHT) method. The synthesis time was sharply reduced to approximately half an hour. Typical microstructures connected with lattice deformations and dislocations were incorporated in the samples of Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 after HPHT. Electrical and thermal transport properties were meticulously researched in the temperature range of 300 K to 700 K. The Fe0.2Ni0.15Co3.65Sb12 sample shows a lower thermal conductivity than that of Ni0.15Co3.85Sb12. The dimensionless thermoelectric figure-of-merit (zT) reaches the maximal values of 0.52 and 0.35 at 600 K and 700 K respectively, for Ni0.15Co3.85Sb12 and Fe0.2Ni0.15Co3.65Sb12 samples synthesized at 1 GPa.