Search Results

You are looking at 1 - 10 of 78 items for :

  • Silicon solar cell x
Clear All
Open access

M. Musztyfaga-Staszuk and R. Honysz

REFERENCES [1] L.A. Dobrzański, M. Musztyfaga, A. Drygała, Final manufacturing process of front side metallisation on silicon solar cells using convectional and unconventional techniques, Strojnicki Vestnik - Journal of Mechanical Engineering 59 3, 175-182 (2013). [2] M. Musztyfaga, L. A. Dobrzański, S. Rusz, L. Prokop, S. Misak, Application of modern technique to set the paramaters of the monocrystalline solar cell and its structure, Electrotechnical Review, ISSN 0033-2097, R. 89 NR 11, p. 24-26 (2013). [3] L.A. Dobrzański, M. Musztyfaga, A

Open access

Barbora Mojrová

References [1] HÖRTEIS, M.: Fine-Line Printed Contacts on Crystalline Silicon Solar Cells, Konstanz, 2009, Dissertation. Universit¨at Konstanz. Supervised by Gerhard Willeke. [2] SCHUBERT, G.: Thick Film Metallization of Crystalline Silicon Solar Cells: Mechanism, Models and Applications, Konstanz, 2006, Dissertation. Universit¨at Konstanz. Supervised by Prof. Dr. Ernst Bucher. [3] HONG, K.-K.-CHO, S.-B.-YOU, J. S.-JEONG, J.-W.- BEA, S.-M.-HUH, J-Y.: Mechanism for the Formation of Ag Crystallites in the Ag Thick

Open access

G. Preduşcă and C. Fluieraru

. Schroder, Semiconductor material and device characterization, Third Edition, John Willey & Sons, Inc., 2006. [5] D.M. Chapin, C.S. Fuller, G.L. Pearson, A New Silicon p-n Junction Photocell for Converting Solar Radiation into Electrical Power, J. Appl. Phys. 25, 676, 1954. [6] N. Bateman, P. Sullivan, C. Reichel, J. Benick, M. Hermle, High quality ion implanted boron emitters in an interdigitated back contact solar cell with 20% efficiency, Proceedings of the 1st International Conference on Crystalline Silicon Photovoltaics, Energy Procedia, vol. 8, pp.509

Open access

Ladislav Harmatha, Miroslav Mikolášek, L’ubica Stuchlíková, Arpád Kósa, Milan Žiška, Ladislav Hrubčín and Vladimir A. Skuratov

of the 15th PVSEC, Shanghai, 2005, pp. 661–663. [3] MIKOLÁŠEK, M.—NEMEC, M.—VOJS, M.—JAKABOVIČ, J.—ŘEHÁČEK, V.—ZHANG, D.—ZEMAN, M.—HARMATHA, L. : Electrical Transport Mechanisms in Amorphous/Crystalline Silicon Heterojunction: Impact of Passivation Layer Thickness, Thin Solid Films 558 No. 7s (2014), 315–319. [4] SCHULZE, T. F.—KORTE, L.—CONRAD, E.—SCHMIDT, M.—RECH, B. : Electrical TransportMechanisms in a-Si:H/c-Si Heterojunction Solar Cells, J. Appl. Phys. 107 No. 023711 (2010), 1–3. [5] ZEMAN, M.—DONG, Z. : Heterojunction Silicon Based

Open access

Stanislav Jurečka, Kentaro Imamura, Taketoshi Matsumoto and Hikaru Kobayashi

R eferences [1] P. Papet, O. Nichiporuk, A. Kaminski, Y. Rozier, J. Kraiem, J.-F. Lelievre, A. Fave, A. Chaumartin and M. Lemiti, “Pyramidal texturing of silicon solar cell with TMAH chemical anisotropic etching”, Solar Energy, Mater.Sol.Cells , vol. 90, 2006, pp. 2319. [2] B. Stegemann, J. Kegel, L. Korte and H. Angermann, “Surface Optimization of Random Pyramid Textured Silicon Substrates for Improving Heterojunction Solar Cells”, Solid State Phenomena , vol. 255, 2016, pp. 338-343. [3] A. Angermann, J. Rappich, L. Korte, I. Sieber, E

Open access

P. Panek

, 35-41 (2010). [6] A. Goetzberger, J. Knobloch, B. Voss, Crystalline Silicon Solar Cell, John Wiley & Sons, Chichester, England, 1998. [7] https://www.engineering.unsw.edu.au/energy-engineering/pc1d-software.html [8] P.A. Basore, IEEE Trans. on Electron Devices 37 , 337-343 (1990). [9] A.G. Aberle, Crystalline silicon solar cells, Bloxham and Chambers Ltd., Rhodes, Australia, 1999. [10] S.M. Sze, K.K. Ng, Physics of Semiconductor Devices, John Wiley & Sons, Hoboken, USA, 2007. [11] S.W. Glunz, J. Dicker, P.P. Altermatt, Proc. of

Open access

Miroslav Mikolášek, Michal Nemec, Jaroslav Kováč, Ladislav Harmatha and Lukáš Minařík

-118. [3] DeWOLF, S.-DESCOEUDRES, A.-HOLMAN, Z. C.-BALLIF, C. : High-Efficiency Silicon Heterojunction Solar Cells: A Review, Green 2 (2012), 7-24. [4] SCHMIDT, M.-KORTE, L.-LAADES, A.-STANGL, R.- SCHUBERT, C.-ANGERMANN, H.-CONRAD, E.-MAYDELL, K. : Physical Aspects of a-Si:H/c-Si Hetero-Junction Solar Cells, Thin Solid Films 515 No. 19 (July 2007), 7475-7480. [5] GUDOVSKIKH, A. S.-KLEIDER, J.-DAMON-LACOSTE, J.-ROCA i CABARROCAS, P.-VESCHETTI, Y.-MULLER, J.-RIBEYRON, P.-ROLLAND, E. : Interface Properties of a-Si:H/c-Si Heterojunction Solar

Open access

Milan Perný, Vladimír Šály, František Janíček, Miroslav Mikolášek, Michal Váry and Jozef Huran

-720, 2012, pp. 533–536. [6] J. Ma, J. Ni, J. Zhang, Z. Huang, G. Hou, X. Chen, X. Zhang, X. Geng and Y. Zhao, “Improvement of Solar Cells Performance by Boron Doped Amorphous Silicon Carbide/Nanocrystalline Silicon Hybrid Window Layers”, Solar Energy Materials and Solar Cells , vol. 114, 2013, pp. 9–14. [7] T. Brodic, “Trends and Developing of New Semiconductor Power Devices based on SiC and Diamond Materials”, Journal of Electrical Engineering , vol. 52, 2001, pp. 105–116. [8] R. Kosiba, G. Ecke, J, Liday, J, Breza and O. Ambacher, “Auger Depth

Open access

K. Kathirvel, R. Rajasekar, T. Shanmuharajan, Samir Kumar Pal, P. Sathish Kumar and J. Saravana Kumar

1 Introduction Development of several viable renewable energy resources is in progress. Photovoltaics (PV) is one among those energy resources that provide clean and sustainable energy technology to replace fossil fuels [1] . In order to enhance the utilization of PV, power conversion efficiency (PCE) and cost factor of silicon solar cells need to be considered. Multi-crystalline silicon (mc-Si) solar cells are cheaper and account for 50 % of PV modules manufactured worldwide due of their low manufacturing cost, high conversion efficiency under tropical

Open access

Jarosław Domaradzki, Danuta Kaczmarek, Kazimierz Drabczyk and Piotr Panek

Abstract

Transparent conducting oxide (TCO) films of indium-tin-oxide were evaporated on the surface of silicon wafers after phosphorous diffusion and on the reference glass substrates. The influence of deposition process parameters (electron beam current, oxygen flow and the substrate temperature) on optical and electrical properties of evaporated thin films were investigated by means of resistivity measurements and optical spectrophotometry. The performance of prepared thin films was judged by calculated figure of merit and the best result was obtained for the sample deposited on the substrate heated to the 100 °C and then removed from the deposition chamber and annealed in an air for 5 minutes at 400 °C. Refractive index and extinction coefficient were evaluated based on measured transmission spectra and used for designing of antireflection coating for solar cell. The obtained results showed that prepared TCO thin films are promising as a part of counter electrode in crystalline silicon solar cell construction.