Search Results

1 - 10 of 1,155 items :

  • Robust design x
Clear All

. , vol. 10, no. 6, Pp.780-792, 2002. [19] K. J. Åström and T. Hägglund, Advanced PID Control , ISA, 2005. [20] B. S. Chen and T. Y. Yang, “Robust Optimal Model Matching Control Design for Flexible Manipulators”, J. Dyn. Syst. T. ASME , vol. 115, Pp.173-178, 1993. [21] M. T. Ho and Y. W. Tu, “PID Controller Design for A Flexible-Link Manipulator”, Proceedings of The 44th IEEE Conference On Decision and Control , and The European Control Conference 2005, Seville, Spain, December 1215, 2005, Pp.6841-6846. [22] R. P. Sree and M. Chidambaram, “Simple Method of Tuning PI

A. Yesildirak: Neural Network Control of Robot Manipulators and Non-Linear Systems . Taylor & Francis, 1998. 12. Lisowski J.: Ship as an object of automatic control . Wyd. Morskie, Gdańsk 1981 (in Polish). 13. Marquez H. J.: Nonlinear control systems. Analysis and design . John Wiley, NJ, 2003. 14. Morawski L., Pomirski J.: Design of the robust PID coursekeeping control system for ships . Polish Maritime Research, No. 1, 2002. 15. de Wit C., Oppe J.: Optimal collision avoidance in unconfined waters . Journal of the Institute of Navigation, Vol. 3,126, No.4

References Asgharpour, M.J., (1998). Multiple Criteria Decision Making , Tehran University Press, Tehran. Borkowski, J.J. and Lucas, J.M., (1997). Designs of mixed resolution for process robustness studies, Technometrics 39(1): 63-70. Borror, C.M. and Montgomery, D.C., (2000). Mixed resolution designs as alternatives to Taguchi inner/outer array designs for robust design problems, Quality and Reliability Engineering International 16(2): 117-127. Box, G.E.P., Bisgaard S., and Fung C., (1988). An explanation and critique of Taguchi's contributions to quality

IFAC, 2004. 5. A. Messac and A. Ismail-Yahaya, Multiobjective robust design using physical programming, Structural and Multidisciplinary Optimization , vol. 23, no. 5, pp. 357–371, 2002. 6. M. Diez, D. Peri, G. Fasano, and E. F. Campana, Hydroelastic optimization of a keel fin of a sailing boat: a multidisciplinary robust formulation for ship design, Structural and Multidisciplinary Optimization , vol. 6, no. 4, pp. 613–625, 2012. 7. W. Barrett, Convergence properties of gaussian quadrature formulae, Coputer Journal , vol. 3, no. 4, pp. 272–277, 1961. 8. A. H

References WU, J.—NGUANG, S. K.—SHEN, J.—LIU, G. J.—LI, Y. G. : Guaranteed cost nonlinear tracking control of a boiler-turbine unit: An LMI approach, International Journal of Systems Science 41 No. 7 (2010), 889-895. KOZÁKOVÁ, A.—VESELÝ, V. : Independent Design of Decentralized Controllers for Specified Closed-Loop Performance, In: European Control Conference ECC'03: Cambridge, UK, September 1-4, 2003, 2003. LANCASTER, P.—TISMENETSKY, M. : The Theory of Matrices, Second Edition: with Applications, Academic Press, 1985. ROSINOVÁ, D.—VESELÝ, V. : Robust PID

: applications of fuzzy sets and their extensions. AOW Exit, Warszawa, Poland. Phadke, M.S., 1989. Quality Engineering Using Robust Design. Prentice Hall International, Inc., London. Plackett, R.L., Burman, J.P., 1946. The design of optimum multifactorial experiments. Biometrika 33, 305-325. Scheffé, H., 1958. Experiments with Mixtures. Journal of the Royal Statistical Society B 20, 344-360. Siegel, S., Tukey, J.W., 1960. A nonparametric sum of ranks procedure for relative spread in unpaired samples. Journal of the American Statistical Association 55 (291), 429-445. Siler, W

R eferences [1] M. Ge, M. -S. Chiu and Q. -G.Wang, “Robust PID controller design via the LMI approach”, Journal of Process Control , vol. 12, pp. 3-13, 2002. [2] M. F. Hassan and M. Zribi, “An observer-based controller for nonlinear systems: A gain scheduling approach”, Applied mathematics and computation , vol. 237, pp. 695-711, 2014. [3] Z. Hu, Y. He andW. Li, “Robust PID Controller Design for Multivariable Processes”, Proceedings of the 2008 Fourth International Conference on Natural Computation , vol. 04, pp. 427-431, 2008. [4] A. Karimi, M. Kunze and R

Enhancement of Overall System Stability”, IEEE Trans. on Power Systems , vol. 4, no. 2, 1989, pp. 614–624. [12] E. Z. Zhou, O. P. Malik and G. S. Hope, “Design of Stabilizer for a Multimachine Power Systems based on the Sensivity of PSS Effect”, IEEE Trans. on Energy Conversion , vol. 7, no. 3, 1992, pp. 606–614. [13] S. Dechanupaprittha, I. Ngamroo and Y. Mitani, “Decentralized Design of Robust Power System Stabilizers Considering System Uncertainties,”: Power Tech IEEE Russia , 2005, CD-ROM. [14] V. Veselý and A. Kozáková, “Robust PSS Design for a Multivariable Power

. 3. Suh, N. P. Axiomatic Design-Advances and Applications. Oxford University Press, 2001. 4. Taguchi, G., S. Chowdhury, Y. Wu. Taguchi’s Quality Engineering Handbook. Willey, 2007. 5. Deb, K. Multi-Objective Optimization. - In: E. K. Burke, G. Kendall, Eds. Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques. New York, Springer, 2005, pp. 403-449. 6. Goel, P. S., N. Singh. A Modeling Approach for Integrated Durability Engineering and Robustness in Product Design. Computers Ind. Engng., 1997. 7. Budynas, R. G., J. K. Nisbett

References [1] HENCEY, B.—ALLEYNE, A.: Robust Gain-Scheduled Control, In American Control Conference (ACC), 2010, pp. 3075–3081. [2] GAO, J.—BUDMAN, H. M.: Design of Robust Gain-Scheduled PI Controllers for Nonlinear Processes, Journal of Process Control 15 No. 7 (2005), 807–817. [3] BLANCHINI, F.: The Gain Scheduling and the Robust State Feedback Stabilization Problems, IEEE Transactions on Automatic Control 45 No. 11 (2000), 2061–2070. [4] STEWART, G. E.: A Pragmatic Approach to Robust Gain Scheduling, In 7th IFAC Symposium on Robust Control Design, vol. 7