Search Results

You are looking at 1 - 5 of 5 items for :

  • Pitzer approach x
Clear All
Open access

Laurent André, Christomir Christov, Arnault Lassin and Mohamed Azaroual

References [1]. Pitzer, K., Thermodynamics of electrolytes. I. Theoretical basis and generalequations, J. Phys. Chem ., 1973 , 77 , 268-277. [2]. Pitzer, K., in Activity Coefficients in Electrolyte Solutions , 2 nd ed., CRC Press, Boca Raton, 1991 . [3]. Harvie, C.; Moller, N.; Weare, J., The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-H-Cl-SO 4 -OH-HCO 3 -CO 3 -CO2-H 2 O system from zero to high concentration at 25°C., Geochim . Cosmochim. Acta , 1984 , 48 , 723-751. [4]. Christov, C., Thermodynamic

Open access

Laurent André, Christomir Christov, Arnault Lassin and Mohamed Azaroual

References [1]. Pitzer, K.S., Thermodynamics of electrolytes. I. Theoretical and general equations. J. Phys. Chem., 1973 , 77, 268-277. [2]. Pitzer, K.S., Theory: ion interaction approach. In R.M. Pytkowicz, (ed.), Activity coefficients in electrolyte solutions, CRC Press, Inc., Boca Raton, Florida , 1979 , 1, 157-208. [3]. Harvie, C.E., Weare, J.H., The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-CI-SO 4 -H 2 O system from zero to high concentration at 25°C. Geochim. Cosmochim. Acta , 1980 , 44, 981-997. [4

Open access

Alberto Schiraldi, Dimitrios Fessas and Marco Signorelli

solutions. Food Hydrocoll., 1997, 11, 145-158. Kalichevsky M.T., Ring S.G., Incompatibility of amylose and amylopectin in aqueous solution. Carboh. Res., 1987, 162, 323-328. Maltini E., Torreggiani D., Venir E., Bertolo G., Water activity and the preservation of plant foods. Food Chem., 2003, 82, 79-86. Pani P., Schiraldi A., Signorelli M., Fessas D., Thermodynamic approach to osmo-dehydration. Food Biophys., 2010, 5, 177-185. Pitzer K.S., Thermodynamics of electrolytes

Open access

D. Gawin, M. Koniorczyk and F. Pesavento

”, Construction and Building Materials 22, 1758-1773 (2008). [26] M. Koniorczyk and P. Konca, “Salt and moisture transport in non-isothermal condition considering the kinetics of salt phase change”, Proc. 12th Int. Conf. on Durability of Building Materials and Components 1, 439-446 (2011). [27] M. Steiger, “Crystal growth in porous materials - I. The crystallization pressure of large crystals”, J. Crystal Growth 282, 455-469 (2005). [28] K.S. Pitzer, “Ion interaction approach: theory and data correlation”, in Activity

Open access

L. Łatka

barrier coatings - thermal and lifetime performance, Surface and Coatings Technology 268 (2015) 15-23. 76. Gupta M., Design of thermal barrier coatings, a modeling approach, Springer, London, 2015. 77. Fan W., Bai Y., Review of suspension and solution precursor plasma sprayed thermal barrier coatings, Ceramics International 42 (2016) 14299-14312. 78. Ma W., Jarligo M.O., Mack D.E., Pitzer D., Malzbender J., Vassen R., Stoever D., New generation perovskite thermal barrier coatings materials, Journal of Thermal Spray Technology 17 (2008) 831