Search Results

You are looking at 1 - 10 of 35,534 items for :

Clear All
Open access

G.A. Kaptagay, Yu.A. Mastrikov and E.A. Kotomin

and atomistic thermodynamic studies of cobalt spinel nanocrystals in wet environment: Molecular interpretation of water adsorption equilibria. The Journal of Physical Chemistry C, 114 (50), 22245–22253. 4. Chen, J., & Selloni, A. (2012). Water adsorption and oxidation at the Co 3 O 4 (110) surface. The Journal of Physical Chemistry Letters, 3 (19), 2808–2814. 5. Liao, P., Keith, J., & Carter, E. (2012). Water oxidation on pure and doped hematite (0001) surfaces: Prediction of Co and Ni as effective dopants for electrocatalysis. Journal of the

Open access

Ilmārs Zālīte, Gundega Heidemane, Aija Krūmiņa, Dzintra Rašmane and Mikhail Maiorov

−x Zn x Fe 2 O 4 synthesized by co-precipitation method,” Journal of Magnetism and Magnetic Materials, vol. 311, no. 2, pp. 494–499, Apr. 2007. https://doi.org/10.1016/j.jmmm.2006.08.005 [10] I. H. Gul, F. Amin, A. Z. Abbasi, M. Anis-ur-Rehman, and A. Maqsood, “Physical and magnetic characterization of co-precipitated nanosize Co–Ni ferrites,” Scripta Materialia , vol. 56, no. 6, pp. 497–500, Mar. 2007. https://doi.org/10.1016/j.scriptamat.2006.11.020 [11] T. Slatineanu, A. R. Iordan, V. Oancea, M. N. Palamaru, I. Dumitru, C. P. Constantin, and O. F

Open access

Ilona Jastrzębska, Jacek Szczerba, Paweł Stoch, Artur Błachowski, Krzysztof Ruebenbauer, Ryszard Prorok and Edyta Śnieżek

References 1. Hill, H. J., Craig, J. R., & Gibbs, G. V. (1979). Systematics of the spinel structure type. Phys. Chem. Minerals , 4 , 317–339. 2. Dormann, J. L., Seqqat, M., Fiorani, D., Nogues, M., Soubeyroux, J. L., Bhargava, S. C., & Renaudin, P. (1990). Mössbauer studies of FeAl 2 O 4 and FeIn 2 S 4 spin glass spinels. Hyperfine Interact. , 54 , 503–508. DOI: 10.1007/s10751-004-7332-8. 3. Russo, U., Carbonin, S., & Giusta, A. D. (1996). Mössbauer spectral studies of natural substituted spinels. In G. J. Long & F. Grandjean (Eds.), Mössbauer

Open access

Anna Pachla, Zofia Lendzion-Bieluń, Dariusz Moszyński, Agata Markowska-Szczupak, Urszula Narkiewicz, Rafał J. Wróbel, Niko Guskos and Grzegorz Żołnierkiewicz

. II. Nanocząstki Fe 3 O 4 z powłokami z polimerów syntetycznych. Polimery, 60(2), 87–94. DOI: 10.14314/polimery.2015.087. 4. Pikul, A.P. (2012). Wybrane zagadnienia z fizyki magnetyków. Wrocław. Uniwersytet Wrocławski. 5. Gupta, A.K. & Guptab, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18), 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012. 6. Fang, W., Zheng, J., Chen, C., Zhang, H., Lu, Y., Mac, L. & Chen, G. (2014). One-pot synthesis of porous Fe 3 O 4 shell

Open access

Łukasz Majchrzycki, Monika Michalska, Mariusz Walkowiak, Zbigniew Wiliński and Ludwika Lipińska

al. (2007). Effect of particle dispersion on high rate performance of nano-sized Li4Ti5O12 anode. Electrochimica Acta 52, 6470-6475. DOI: 10.1016/j.electacta.2007.04.070. 5. Tarascon, J.M. & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367. DOI: 10.1038/35104644. 6. Kovacheva, D. et al. (2002). Synthesizing nanocrystalline LiMn 2 O 4 by a combustion route. J. Mater. Chem. 12, 1184-1188. DOI: 10.1039/b107669h. 7. Thackeray, M.M. (1997). Manganese oxides for

Open access

Palusamy Suppuraj, Ganesamoorthy Thirunarayanan, Meenakshisundaram Swaminathan and Inbasekaran Muthuvel

, J.-S. Lee, K.-T. Lim, O.-S. Jung, E.-D. Jeong, J.-S. Bae, M.-S. Won, and H.-G. Kim, “Energy band structure and photocatalytic property of Fe-doped Zn 2 TiO 4 material,” Bulletin of the Korean Chemical Society , vol. 30, no. 12, pp. 3021–3024, Dec. 2009. https://doi.org/10.5012/bkcs.2009.30.12.3021 [11] Q. Li, C. Bo, and W. Wang, “Preparation and magnetic properties of ZnFe 2 O 4 nanofibers by coprecipitation–air oxidation method,” Materials Chemistry and Physics , vol. 124, no. 2–3, pp. 891–893, Dec. 2010. https://doi.org/10.1016/j.matchemphys.2010

Open access

Wojciech Konicki, Daniel Siber and Urszula Narkiewicz

://dx.doi.org/10.1016/j.clay.2012.09.001 . 19. Vijayakumar, G., Tamilarasan, R. & Dharmendirakumar, M. (2012). Adsorption, Kinetic, Equilibrium and Thermodynamic studies on the removal of basic dye Rhodamine-B from aqueous solution by the use of natural adsorbent perlite. J. Mater. Environ. Sci. 3(1), 157–170. ISSN: 2028-2508. 20. Zhang, Z. & Kong, J. (2011). Novel magnetic Fe 3 O 4 @C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. J. Hazard. Mater. 193, 325–329. DOI: 10.1016/j.jhazmat.2011.07.033. 21. Xie, Y., Qian, D., Wu

Open access

D. Czekaj, A. Lisińska-Czekaj, K. Osińska and K. Biernacki

References [1] W. Wersing, Microwave ceramics for resonators and filters, Current Opinion in Solid State and Materials Science 1, 5, 715-731 (1996). [2] N. Wang, M.-Y. Zhao, Z.-W. Yi n, W. Li, Effects of complex substitution of La and Nd for Bi on the microwave dielectric properties of Bi Nb O4 ceramics, Materials Research Bulletin 39, 439-448 (2004). [3] H. Kagata, T. Inoue, J. Kato, I. Kameyama, Low-fire bismuth-based dielectric ceramics for microwave use, Jpn. J. Appl. Phys. 31, 3152 (1992

Open access

A. Lisińska-Czekaj, D. Czekaj, K. Osińska and M. Adamczyk

References [1] Ch.-L. Huang, M.-H. Weng, G.-M. Shan, Effect of V2O5 and Cu Oadditives on sintering behavior and microwave dielectric properties of Bi Nb O4 ceramics, Journal of Materials Science 35, 5443-5447 (2000). [2] W. Wersing, Microwave ceramics for resonators and filters, Current Opinion in Solid State and Materials Science 1, 715-731 (1996). [3] H. Kagata, T. Inou e, J. Kato, I. Kameyama, Low-fire bismuth-based dielectric ceramics for microwave use, Jpn. J. Appl. Phys. 31, 3152 (1992

Open access

Magdalena Jedrzejczak-Silicka

oxide nanoparticels using Eclipta prostrata on human liver carcinoma cells. Nanomaterials 5, 1317-1330. DOI: 10.3390/nano5031317. 6. Gurunathan, S., Raman, J., Malek, S.N.A., John, P.A. &Vikineswary, S. 2013. Green synthesis of silver nanoparticles using Ganoderma neo-japonicum Imazeki: a potential cytotoxic agent against breast cancer cells. Int. J. Nanomed. 8, 4399-4413. DOI: 10.2147/IJN.S51881. 7. Bai, L.Z., Zhao, D.L., Xu, Y., Zhang, J.M., Gao, Y.L., Zhao, L.Y., Tang, J.T. 2012. Inductive heating property of graphene oxide-Fe3O4