Search Results

You are looking at 1 - 10 of 2,181 items for :

  • Microstructure x
Clear All
Open access

I. Jonczy

. Lobo, P.C. Mahapatra, M. Prabhu, M. Ranjan, Steel Res. Int. 80, 709 (2009). [13] R.H. Vernon, A practical guide to rock microstructure, Cambridge 2004.

Open access

M. Kawalec

References [1] Fraś, E. & Guzik, E. (1980). Primary microstructure of the Fe-C-V alloys. Archivess of Metallurgy. 25(4), 757-772. [2] Fraś, E. (2003). Crystallization of metals. Warsaw: WNT. [3] Fraś, E., Guzik, E., Kapturkiewicz, W. & Lopez, H. F. (1997). Carbide morphology in bulk and undirectionally solidified Fe-C-V eutectics. Materials Science and Technology. 13, 989-996. [4] Kopyciński, D. & Piasny, S. (2012). Influence of tungsten and titanium on the structure of chromium cast iron

Open access

W. Głuchowski, Z. Rdzawski, J. Domagała-Dubiel and J. Sobota

References [1] Z. Rdzawski, W. Głuchowski, J. Stobrawa, W. Kempiński, B. Andrzejewski, Microstructure and properties of Cu-Nb and Cu-Ag nanofiber composites, Archives of Civil and Mechanical Engineering 15, 689-697 (2015). [2] Z.W. Wu, J.J. Liu, Y. Chen, L. Meng, Microstructure, mechanical properties and electrical conductivity of Cu-12 wt.% Fe microcomposite annealed at different temperatures, Journal of Alloys and Compounds 467, 213-218 (2009). [3] Hong, S.I., Hill, M.A., Microstructure and conductivity of Cu

Open access

Tomasz Wejrzanowski, Wojciech Spychalski, Krzysztof Różniatowski and Krzysztof Kurzydłowski

-753. Jensen E.B. and Gundersen H.J.G. (1982). Stereological ratio estimation based on counts from integral test systems, Journal of Microscopy 125 : 51-66. Kurzydłowski K.J. and Ralph B. (1995): The Quantitative Description of the Microstructure of Materials , CRC Press, London. Spychalski W.L., Kurzydłowski K.J. and Ralph B. (2002). Computer study of inter- and intragranular surface cracks in brittle polycrystals, Materials Characterization 49 (9): 45-53. Kril C.E. and Birringer R. (1998

Open access

P. Łukowski

References 1. P. Łukowski, “Material modification of concrete” (in Polish), SPC - Polski Cement, Cracow, 2016. 2. E. Horszczaruk, P. Brzozowski, “Bond strength of underwater repair concretes under hydrostatic pressure”, Construction and Building Materials, 72: 167-173, 2014. 3. T. Zdeb, J. Śliwiński, „The influence of selected material and technological factors on mechanical properties and microstructure of reactive powder concrete (RPC)“, Archives of Civil Engineering, LVII, 2: 227-246, 2011. 4

Open access

J. Łabanowski and T. Olkowski

1962. BS1400:1985 Copper alloy ingot and copper alloy and high conductivity copper castings. Al-Hashem A., Raid W.: The role of microstructure of Ni-Al- bronze alloy on its cavitation corrosion behavior in natural seawater. Materials Characterization 48, 2002, 37-41.

Open access

E. Lichańska, M. Sułowski and A. Ciaś

, 227-236 (2006). [5] P. Gac, M. Sułowski, M. Ciesielka, Własności mechaniczne i mikrostruktura spiekanych stali o zawartości 3% Mn, 3% Cr i 0,5% Mo obrabianych cieplnie, Rudy Metale Nieżelazne 57, 10, 712-717 (2012). [6] S. Cygan, M. Sułowski, M. Ciesielka, Własności mechaniczne i mikrostruktura spiekanych stali konstrukcyjnych obrabianych cieplnie, Rudy i Metale Nieżelazne 57, 9, 609-614 (2012). [7] M. Sułowski, M. Kabátová, E. Dudrová, The effect of sintering atmosphere on the microstructure, properties and fracture

Open access

A. Klasik, M. Maj, K. Pietrzak, A. Wojciechowski and J. Sobczak

traitements Thermiques sur les propriétés mécaniques et sur la Microstructure des deux alliages composites Al-Si-Mg/SiC/10p, 1993 Université du Québec à Chicoutimi, Québec. [9] D. J. Lloyd, E. Dewing, Stability of SiC in Molten Aluminum, in D. S. Wilkinson (Ed.) Advanced Structural Materials, 71-78, Pergamon Press, New York 1989. [10] A359 Al alloy reinforced with irregularly shaped SiC particles .

Open access

H. Paul, M. Darrieulat, N. Vanderesse, L. Lityńska and M. Miszczyk

References C. Chauvy, P. Barberis, F. Montheillet, Microstructure transformation during warm working of β-treated lamellar Zircaloy-4 within the upper α-range. Mat. Sci. Eng. A, 431 , 59-67 (2006). C. Chauvy, Traitments thermomechaniques dans le haut domaine α du Zircaloy-4 trempe-β, PhD. Thesis, Ecole Nationale Superieure des Mines de Saint Etienne (2005). J. Crépin, T. Bretheau, D. Caldemaison, Plastic deformation mechanisms of β-treated zirconium. Acta metall. mater. 43 , 3709

Open access

D. Kuc and J. Gawąd

References M.A. Miodownik, A review of microstructures computer models used to simulate grain growth and recrystallization in aluminum alloys, J. of Light Metals 2 , 125-135 (2002). R. Ding, X.Z. Guo, Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization Acta Mater. 49 , 3163-3168 (2001). R.L. Goetz, Z. Seetharaman, Modelling dynamic recrystallization using cellular automata, Scripta Mater. 38 , 405-410 (1998