Search Results

You are looking at 1 - 10 of 89 items for :

  • Hilbert transform x
Clear All
Open access

M. Majewski and L.B. Magalas

.G. Piersol, Analysis and Measurement Procedures, Wiley-Interscience, 1986. [11] M. Feldman, Hilbert transform, envelope, instantaneous phase, and frequency, in Encyclopedia of Structural Health Monitoring, ed. by Christian Boller, Fu-Kuo Chang, Yozo Fujino, John Wiley & Sons, Ltd., 2009. [12] M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert transform, Journal of Sound and Vibration 295 , 518-530 (2006). [13] K.-H. Robrock, Mechanical Relaxation of Interstitials in Irradiated Metals, Springer-Verlag, Berlin Heidelberg

Open access

L.B. Magalas and M. Majewski

spectroscopy HRMS. Logarithmic decrement, Sol. St. Phen. 184 , 467-472 (2012). [13] M. Majewski, A. Piłat, L.B. Magalas, Advances in computational high-resolution mechanical spectroscopy HRMS. Part 1 – Logarithmic decrement, IOP Conf. Series: Materials Science and Engineering 31 , 012018 (2012). [14] M. Majewski, L.B. Magalas, Critical assessment of the issues in the application of Hilbert transform to compute the logarithmic decrement, Arch. Metall. Mater. 60 , 1103 (2015). [15] C.A. Von Urff, F.I. Zonis, The square-law single-sideband system, IRE Trans

Open access

M. Majewski and L.B. Magalas

REFERENCES [1] E. Bonetti, E.G. Campari, L. Pasquini, L. Savini, Automated resonant mechanical analyzer, Rev. Sci. Instrum. 72 , 2148-2152 (2001). [2] L.B. Magalas, M. Majewski, Hilbert-twin – A novel Hilbert transform-based method to compute envelope of free decaying oscillations embedded in noise, and the logarithmic decrement in high-resolution mechanical spectroscopy HRMS 60 , 1091-1098 (2015). [3] M. Majewski, A. Piłat, L.B. Magalas, Advances in computational high-resolution mechanical spectroscopy HRMS. Part 1 – Logarithmic decrement

Open access

Samir Avdakovic and Adnan Bosovic

–229. [12] Huang, N., Wu, Z., A Review on Hilbert-Huang transform: Method and its Applications to Geophysical Studies, Rev. Geophys. , 46, RG2006, doi:10.1029/2007RG000228. [13] Flandrin, P., Rilling, G. Goncalves, P. (2004), Empirical Mode Decomposition as a Filter Bank. IEEE Signal Process. Lett. , 11, 112–114. [14] Battista, B., Knapp, C., McGee, T., Goebel, V. (2007). Application of the Empirical Mode Decomposition and Hilbert-Huang Transform to Seismic Reflection Data. Geophysics , 72(2), H29-H37, doi: 10.1190/1.2437700. [15] Vincent, C., Gregor, G., Pierre

Open access

Kajetana Snopek

References S. L. Hahn, "Multidimensional Complex Signals with Single-orthant Spectra," Proceedings of the IEEE , vol. 80, no. 8, pp. 1287-1300, August 1992. S. L. Hahn, Hilbert Transforms in Signal Processing. Artech House Inc., 1996. T. Bülow and G. Sommer, "The Hypercomplex Signal-A Novel Extension of the Analytic Signal to the Multidimensional Case," IEEE Transactions on Signal Processing , vol. 49, no. 11, pp. 2844-2852, November 2001. E. M. S

Open access

Chun-Yao Lee and Yu-Hua Hsieh

). Application of wavelet analysis in EMG feature extraction for pattern classification. Measurement Science Review , 11 (2), 45-52. [7] Kijewski-Correa, T., Kareem, A. (2006). Efficacy of Hilbert and wavelet transforms for time-frequency analysis. Journal of Engineering Mechanics , 132 (10), 1037-1049. [8] Phinyomark, A., Limsakul, C., Phukpattaranont, P. (2011). On Hilbert-Huang transform approach for structural health monitoring. Journal of Intelligent Material Systems and Structures , 17 (8), 721-728. [9] Phinyomark, A

Open access

Adam Kotowski

-domain integration method for computing non-stationary response histories of linear oscillators with discrete-time random forcing, Journal of Sound and Vibration, Vol. 254, 635-676. 5. Feldman M. (2011), Hilbert transform in vibration analysis, Mechanical Systems and Signal Processing, 25, 735-802. 6. Gasior M. (2006), Improving frequency resolution of discrete spectra, Ph.D. thesis, AGH University of Science and Technology, Krakow, Poland. 7. Gasior M. (2010), Improving frequency resolution of discrete spectra - Algorithms of three

Open access

Waldemar Popiński

Wavelet Filterung mit hoher Zeit-Frequenz-Auflösung, Veröffentlichungen der Deutschen Geodätischen Kommission , Reihe A — Theoretische Geodäsie, Heft 119, Verlag der Bayerischen Akademie der Wissenschaften, München. Fabert O., Schmidt M. (2003) Wavelet Filtering with High Time-Frequency Resolution and Effective Numerical Implementation Applied on Polar Motion, Artificial Satellites — Journal of Planetary Geodesy , Vol. 38, No. 1, 3-13. Forbes A.M.G. (1988) Fourier Transform Filtering: A Cautionary Note, Journal of

Open access

Marta Borowska, Ewelina Brzozowska and Edward Oczeretko

., Murphy, P., Lowery, C. L., & Eswaran, H. (2015). Tracking the Changes in Synchrony of the Electrophysiological Activity as the Uterus Approaches Labor Using Magnetomyographic Technique. Reproductive Sciences , 22 (5), 595–601. Hahn, S. L. (1996). Hilbert transforms in signal processing . Boston, London: Artech House. Horoba, K., Jezewski, J., Wrobel, J., & Graczyk, S. (2001). Algorithm for detection of uterine contractions from electrohysterogram. Engineering in Medicine and Biology Society, 2001. Proceedings of the 23rd Annual International Conference

Open access

L.B. Magalas

.B. Magalas, M. Majewski, Recent advances in determination of the logarithmic decrement and the resonant frequency in low-frequency mechanical spectroscopy, Sol. St. Phen. 137 , 15-20 (2008). [8] L.B. Magalas, M. Majewski, Ghost internal friction peaks, ghost asymmetrical peak broadening and narrowing. Misunderstandings, consequences and solution, Mater. Sci. Eng. A 521-522 , 384-388 (2009). [9] L.B. Magalas, M. Majewski, Hilbert-twin - A novel Hilbert transform-based method to compute envelope of free decaying oscillations embedded in noise, and the