Search Results

You are looking at 1 - 9 of 9 items for :

Clear All
Open access

Magdalena Regel-Rosocka and Maciej Wiśniewski

:// Regel-Rosocka, M. & Szymanowski, J. (2005). Direct Yellow and Methylene Blue Liquid-Liquid Extraction with Alkylene Carbonates. Chemosphere 60, 1151-1156. DOI: 10.1016/j.chemosphere.2005.01.019. Dziwinski, E. & Szymanowski, J. (1998). Composition of Cyanex 923, Cyanex 925, Cyanex 921 and TOPO. Solvent Extr. Ion Exc. 16(6), 1515-1525. DOI: 10.1080/07366299808934592.

Open access

A. Balasubramanian and S. Venkatesan

., Ismael, M. R. C. & Carvalho, J. M. R. (2007). Recovery of phenol from aqueous solutions using liquid membranes with Cyanex 923. J. Membr. Sci. 305, 313-324. DOI:10.1016/j.memsci.2007.08.016. Frankenfeld, J. W. & Li, N. N. (1987). Handbook of Separation Process Technology. New York, NY: John Wiley & Sons, Inc. Urtiaga, A., Gutiérrez, R. & Ortiz, I. (2009). Phenol recovery from phenolic resin manufacturing: Viability of the emulsion pertraction technology. Desalination. 245, 444-450. DOI: 10.1016/j.desal.2009

Open access

Katarzyna Staszak, Ryszard Cierpiszewski and Krystyna Prochaska

References Mishra, R. K., Rout, P. C., Sarangi, K. & Nathsarma, K. C. (2010). A comparative study on extraction of Fe(III) from chloride leach liquor using TBP, Cyanex 921 and Cyanex 923, Hydrometallurgy 104, 298-303. DOI:10.1016/j.hydromet.2010.07.003. Saji, J. & Reddy, M. L. P. (2001). Liquid-liquid extraction separation of iron(III) from titania wastes using TBP-MIBK mixed solvent system, Hydrometallurgy 61, 81-87. DOI: 10.1016/S0304-386X(01)00146-3. Hirato, T., Zhi-Chu, W

Open access

S. Nagy, L. Bokányi, I. Gombkötő and T. Magyar

Cyanex 923 and Cyanex 925, Hydrometallurgy 131 , 24-28 (2013). [8] H. Filik, R.A. Apak, Chelating ion exchanger for gallium recovery from alkaline solution using 5-palmitoyl-8-hydroxyquinoline immobilized on a nonpolar adsorbent, Sep. Sci. Technol. 33 , 1123-1134 (1998). [9] W.L. Chou, C.T. Wang, K.C. Yang, Y.H. Huang, Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process, J. Hazard. Mater. 160 , 6-12 (2008). [10] B. Swain, C. Mishra, L. Kang, K.-S. Park, C.G. Lee, H

Open access

Raju Banda, Thi Hong Nguyen and Man Seung Lee

K.K., 2008. Liquid-liquid extraction of sulphuric acid from zinc bleed stream. Hydrometallurgy , 92, 42-47. DOI: 10.1016/j.hydromet.2008.01.008. Agarwal A., Sahu K.K., 2009. An overview of the recovery of acid from spent acidic solutions from steel and electroplating industries. J. Haz. Mat. , 171, 61-75. DOI: 10.1016/j.jhazmat.2009.06.099. Alguacil F.J., Lopez F.A., 1996. The extraction of mineral acids by the phosphine oxide Cyanex 923. Hydrometallurgy , 42, 245-255. DOI: 10.1016/0304-386X (95) 00101-L. Alguacil

Open access

Adam Makowka and Beata Pospiech

., Pospiech, B. (2014). Process and technologies for the recycling of spent fluorescent lamps. Polish Journal of Chemical Technology, 16, 3, 80-85. [5] Mishra, S., Sahu, S. K. (2016). Solvent extraction of Ce(III) from nitric acid medium using binary mixture of PC 88A and Cyanex 921. Hydrometallurgy 166, 252-259. [6] Nasab, M. E., Sam, A., Milani, S. A. (2011). Determination of optimum process conditions for the separation of thorium and rare earth elements by solvent extraction. Hydrometallurgy 106, 141-147. [7] Kumbasar, R. A., Tutkun, O. (2004

Open access

Mahmoud Belalia, Meriem Bendjelloul, Abdallah Aziz and El Hadj Elandaloussi

and economic removal of organic dyes and heavy metals from wastewater by zinc-induced in-situ reduction and precipitation of graphene oxide. J. Taiwan Inst. Chem. Eng . 2018 , 88 , 137-145. 5. Reddy, B.R., Priya, D.N. Chloride leaching and solvent extraction of cadmium, cobalt and nickel from spent nickel–cadmium, batteries using Cyanex 923 and 272. J. Power Sources , 2006 , 161 , 1428–1434. 6. Malla, M.E.; Alvarez, M.B., Batistoni, D.A. Evaluation of sorption and desorption characteristics of cadmium, lead and zinc on Amberlite IRC-718

Open access

Ali N. Siyal and Saima Q. Memon

gelatin nanocomposites and their applications in removal of Cr (VI) ions from aqueous solutions. J. Macromol. Sci. Part A Pure Appl. Chem . 48 (1), 47-56. DOI: org/10.1080 /10601325.2011.528308. 30. Ozcan, S., Tor, A. & Aydin, M.E. (2010). Removal of Cr(VI) from aqueous solution by polysulfone microcapsules containing Cyanex 923 as extraction reagent. Desalination 259 (1-3), 179-186. DOI: org/10.1016/j.desal.2010.04.009. 31. Bayramoglu, G.& Yakup, A.M. (2008). Adsorption of Cr(VI) onto PEI immobilized acrylate-based magnetic beads

Open access

Ching-Hwa Lee, Hang-Yi Lin, Elon I. Cadogan, Srinivasa R. Popuri and Chia-Yuan Chang

LTERATURE CITED 1. Moskalyk, R.R. (2003). Gallium: the backbone of the electronics industry. Min. Eng. 16 921–929. DOI: 2. Bina, G., Niti, M., Zareena, B.I. & Indu, S. (2007). Extraction and recovery of Ga(III) from waste material using Cyanex 923. Hydrometallurgy 87, 18–26. DOI: 10.1016/j.hydromet.2007.01.001. 3. Wu, C.C. & Liu, H.M. (2009). Determination of gallium in human urine by supercritical carbon dioxide extraction and graphite furnace atomic absorption spectrometry. J. Hazard. Mat