Search Results

You are looking at 1 - 10 of 8,672 items for :

Clear All
Open access

Jichang Wu, Hajo Broersma, Yaping Mao and Qin Ma

. Theory Ser. B 17 (1974) 281–298. doi:10.1016/0095-8956(74)90034-3 [5] J.C. Wu, H.J. Broersma and H. Kang, Removable edges and chords of longest cycles in 3 -connected graphs , Graphs Combin. 30 (2014) 743–753. doi:10.1007/s00373-013-1296-x [6] J.C. Wu, X.L. Li and L.S. Wang, Removable edges in a cycle of a 4 -connected graph , Discrete Math. 287 (2004) 103–111. doi:10.1016/j.disc.2004.05.015 [7] J.C.Wu, X.L. Li and J.J. Su, The number of removable edges in a 4 -connected graph , J. Combin. Theory Ser. B 92 (2004) 13–40. doi:10.1016/j

Open access

Mohammad Reza Oboudi

R eferences [1] S. Akbari, S. Alikhani, M.R. Oboudi and Y.H. Peng, On the zeros of domination polynomial of a graph , Combin. Graphs 531 (2010) 109–115. doi:10.1090/conm/531/10460 [2] S. Akbari and M.R. Oboudi, Cycles are determined by their domination polynomials , Ars Combin. 116 (2014) 353–358. [3] S. Akbari and M.R. Oboudi, On the edge cover polynomial of a graph , European J. Combin. 34 (2013) 297–321. doi:10.1016/j.ejc.2012.05.005 [4] S. Akbari, M.R. Oboudi and S. Qajar, On the rational independence roots , Combin. Graphs

Open access

Izolda Gorgol and Anna Lechowska

a cycle, Combin. Probab. Comput. 12 (2003) 585-598. doi: 10.1017/S096354830300590X [20] T. Jiang and D.B. West, Edge-colorings of complete graphs that avoid polychromatic trees, Discrete Math. 274 (2004)) 137-145. doi: 10.1016/j.disc.2003.09.002 [21] S. Jendrol’, I. Schiermeyer and J. Tu, Rainbow numbers for matchings in plane triangulations, Discrete Math. 331 (2014) 158-164. doi: 10.1016/j.disc.2014.05.012 [22] S. Klavžar, U. Milutinović and C. Petr, Combinatorics of topmost discs of multi-peg Tower of Hanoi

Open access

Daouya Laïche, Isma Bouchemakh and Éric Sopena

R eferences [1] G. Argiroffo, G. Nasini and P. Torres, Polynomial instances of the packing coloring problem , Electron. Notes Discrete Math. 37 (2011) 363–368. doi:10.1016/j.endm.2011.05.062 [2] G. Argiroffo, G. Nasini and P. Torres, The packing coloring problem for ( q, q − 4) -graphs , Lecture Notes in Comput. Sci. 7422 (2012) 309–319. doi:10.1007/978-3-642-32147-4_28 [3] G. Argiroffo, G. Nasini and P. Torres, The packing coloring problem for lobsters and partner limited graphs , Discrete Appl. Math. 164 (2014) 373–382. doi:10

Open access

Sylwia Cichacz, Bryan Freyberg and Dalibor Froncek

R eferences [1] S. Arumugam, D. Froncek and N. Kamatchi, Distance Magic Graphs—A Survey , J. Indones. Math. Soc., Special Edition (2011) 11–26. doi:10.22342/jims.0.0.15.11-26 [2] G.S. Bloom and D.F. Hsu, On graceful digraphs and a problem in network addressing , Congr. Numer. 35 (1982) 91–103. [3] G.S. Bloom, A. Marr and W.D. Wallis, Magic digraphs , J. Combin. Math. Combin. Comput. 65 (2008) 205–212. [4] S. Cichacz, Note on group distance magic graphs G [ C 4 ], Graphs Combin. 30 (2014) 565–571. doi:10.1007/s00373-013-1294-z

Open access

Juan Alberto Rodríguez-Velázquez, Erick David Rodríguez-Bazan and Alejandro Estrada-Moreno

.1007/s10623-012-9642-1 [8] S. Gravier, M. Kovše and A. Parreau, Generalized Sierpiński graphs , in: Posters at EuroComb’11, Rényi Institute, Budapest, 2011. http://www.renyi.hu/conferences/ec11/posters/parreau.pdf [9] A.M. Hinz and C.H. auf der Heide, An efficient algorithm to determine all shortest paths in Sierpiński graphs , Discrete Appl. Math. 177 (2014) 111–120. doi:10.1016/j.dam.2014.05.049 [10] A.M. Hinz, S. Klavžar, U. Milutinović and C. Petr, The Tower of Hanoi—Myths and Maths (Birkhäuser/Springer Basel, 2013). [11] A.M. Hinz, S

Open access

Robert Janczewski, Michał Małafiejski and Anna Małafiejska

. 76 (2012) 143–148. [16] A.C. Shiau, T.-H. Shiau and Y.-L. Wang, Incidence coloring of Cartesian product graphs , Inform. Process. Lett. 115 (2015) 765–768. doi:10.1016/j.ipl.2015.05.002 [17] W.C. Shiu and P.K. Sun, Invalid proofs on incidence coloring , Discrete Math. 308 (2008) 6575–6580. doi:10.1016/j.disc.2007.11.030 [18] J. Wu, Some results on the incidence coloring number of a graph , Discrete Math. 309 (2009) 3866–3870. doi:10.1016/j.disc.2008.10.027 [19] X. Liu and Y. Li, The incidence chromatic number of some graph , Int

Open access

Jing Wang, Zhangdong Ouyang and Yuanqiu Huang

R eferences [1] J. Adamsson and R.B. Richter, Arrangements, circular arrangements and the crossing number of C 7 × C n , J. Combin. Theory Ser. B 90 (2004) 21–39. doi:10.1016/j.jctb.2003.05.001 [2] L.W. Beineke and R.D. Ringeisen, On the crossing numbers of products of cycles and graphs of order four , J. Graph Theory 4 (1980) 145–155. doi:10.1002/jgt.3190040203 [3] D. Bokal, On the crossing numbers of Cartesian products with paths , J. Combin. Theory Ser. B 97 (2007) 381–384. doi:10.1016/j.jctb.2006.06.003 [4] D. Bokal, On the

Open access

Edita Máčajová and Martin Škoviera

R eferences [1] G. Brinkmann, K. Coolsaet, J. Goedgebeur and H. Mélot, House of Graphs: a database of interesting graphs , Discrete Appl. Math. 161 (2013) 311–314. doi:10.1016/j.dam.2012.07.018 [2] G. Brinkmann, J. Goedgebeur, J. Hägglund and K. Markström, Generation and properties of snarks , J. Combin. Theory Ser. B 103 (2013) 468–488. doi:10.1016/j.jctb.2013.05.001 [3] G. Brinkmann and E. Steffen, Snarks and reducibility , Ars Combin. 50 (1998) 292–296. [4] P.J. Cameron, A.G. Chetwynd and J.J. Watkins, Decomposition of snarks

Open access

Nina Zubrilina

R eferences [1] B. Bollobás, D. Mitsche and P. Pralat, Metric dimension for random graphs , (2012). arXiv:1208.3801 [2] G. Chartrand, C. Poisson and P. Zhang, Resolvability and the upper dimension of graphs , Comput. Math. Appl. 39 (2000) 19–28. doi:10.1016/S0898-1221(00)00126-7 [3] G. Chartrand, L. Eroh, M.A. Johnson and O.R. Oellermann, Resolvability in graphs and the metric dimension of a graph , Discrete Appl. Math. 105 (2000) 99–113. doi:10.1016/S0166-218X(00)00198-0 [4] F. Harary and R.A. Melter, On the metric dimension of a