Search Results

1 - 10 of 25 items :

  • "zero valent iron" x
Clear All

References Černik M (2010) Chemicky podporovane in situ sanačni technologie. Vydavatelstvi VŠCHT Praha, ISBN: 978-80-7080-767-5. Chang M, Kang H (2009) Remediation of pyrenecontaminated soil by synthesized nanoscale zero-valent iron particles. J. Environ. Sci. Health 44, 576-582. EU (2000) Directive 2000/60/EC of the European Parliament and of The Council of 23 October 2000 establishing a framework for community action in the field of water policy, Off. J. Eur. Communities, L 327/1. EU (2008) Directive 2008/105/EC of the European Parliament and of The Council of

References Arancibia-Miranda, N., Baltazar, S. E., García, A., Romero, A. H., Rubio, M. A., & Altbir, D. (2014). Lead removal by nano-scale zero valent iron: surface analysis and pH effect. Materials Research Bulletin, 59, 341-348. DOI: 10.1016/j.materresbull.2014.07.045. Azizian, S. (2004) Kinetic models of sorption: a theoretical analysis. Journal of Colloid and Interface Science, 276, 47-52. DOI: 10.1016/j.jcis.2004.03.048. Balan, E., Saitta, A. M., Mauri, F., & Calas, G. (2001). First-principles modeling of the infrared spectrum of kaolinite. American

Production for Degradation of Trichloroethylene. Colloid. Surf. A, 223, 103-112. DOI: 10.1016/S0927-7757(03)00187-0. Allen, S.J., Gan, Q., Matthews, R. & Johnson, P.A. (2003). Comparison of Optimised Isotherm Models for Basic Dye Adsorption by Kudzu. Bioresour. Technol. 88, 143-152. DOI: 10.1016/S0960-8524(02)00281-X. Liu, Q.Y., Bei, Y.L. & Zhou, F. (2009). Removal of Lead (II) from Aqueous Solution With Amino-Functionalized Nanoscale Zero-Valent Iron. Cent. Eur. J. Chem. , 7, 79-82. DOI: 10.2478/s11532-008-0097-1. Wu, R.C., Qua, J.H. & Chen, Y.S. (2005) Magnetic

to radionuclides, trace metal, and nutrients. Amsterdam, Denmark: Elsevier Science. 16. Kenneke, J.F. & McCutcheon, S.C. (2003). Use of pretreatment zone and zero-valent iron for the remediation of chloroalkenes in an oxic aquifer. Environ. Sci. Technol. 37(12), 2829-2835. DOI:10.1021/es0207302. 17. Wilkin, R.T., Su, C.M., Ford, R.G. & Paul, C.J. (2005). Chromium-removal processes during groundwater remediation by a zero-valent iron permeable reactive barrier. Environ. Sci.Technol. 39, 4599-4605. DOI: 10.1021/es050157x. 18. Velazquez-Jimenez, L.H., Pavlick, A

zero-valent iron substrate. Water Air Soil Pollut. 2014;225(9);2098-2111; DOI: 10.1007/s11270-014-2098-3. [4] Klimkova S, Cernik M, Lacinova L, Filip J, Jancik D, Zboril R. Zero-valent iron nanoparticles in treatment of acid mine water from in situ uranium leaching. Chemosphere. 2011;82(8):1178-1184. DOI: 10.1016/j.chemosphere.2010.11.075. [5] Gottinger A, Wild D, McMartin D, Moldovan B, Wang D. Development of an iron-amended biofilter for removal of arsenic from rural Canadian prairie potable water. Conference, WIT Trans Ecol Environ. 2010;135:333-344. DOI: 10

, Cheleptchikov A, Brodsky E, Soyfer V, Zhilnikov V. Reductive dechlorination of polychlorinated dibenzo-p-dioxins by zerovalent iron in subcritical water. Chemosphere. 2002;46:1293-1296. DOI: 10.1016/S0045-6535(01)00276-4. [5] Wang Z, Huang W, Peng P, Fennell DE. Rapid transformation of 1,2,3,4-TCDD by Pd/Fe catalysts. Chemosphere. 2010;78:147-151. DOI: 10.1016/j.chemosphere.2009.09.066. [6] Elliott DW, Lien H-L, Zhang W-X. Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng. 2009;135:317-24. DOI: 10.1061/(ASCE)0733-9372(2009)135:5(317). [7] Klimkova S

References Zhang, J.Y., Liu, Q.Y., Ding, Y.J. & Bei, Y.L. (2011). 3-aminopropyltriethoxysilane functionalized nanoscale zero-valent iron for the removal of dyes from aqueous solution. Pol. J. Chem. Technol. , 13 (2), 35-39. DOI: 10.2478/v10026-011-0021-x. Lagergren, S. (1898). Zur theorie der sogenannten adsorption gelöster stoffe. K. Sven. Vetenskapsakad. Handl. , 24 (4), 1-39. Ho, Y.S. & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chem. Eng. J. , 70 (2), 115-124. Ho, Y.S. (2004). Citation review of Lagergren kinetic rate equation on

References [1] Matheson LJ, Tratnyek PG. Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol. 1994;28(12):2045-53. DOI: 10.1021/es00061a012. [2] Cantrell KJ, Kaplan DI, Wietsma TW. Zero-valent iron for the in situ remediation of selected metals in groundwater. J Hazard Mater. 1995;42(2):201-12. DOI: 10.1016/0304-3894(95)00016-N. [3] Wing MR. Apparent first-order kinetics in the transformation of 1,1,1-trichloroethane in groundwater following a transient release. Chemosphere. 1997;34(4):771-81. DOI: 10.1016/S0045-6535(97)00004-0. [4

References Auffan M., Rose J., Wiesner M., Bottero J., 2009. Chemical stability of metallic nanoparticles: a parameter controlling their potential cellular toxicity in vitro. Environmental Pollution, 157(4): 1127-1133. Barzan E., Mehrabian S., Irian S., 2014. Antimicrobial and genotoxicity effects of zero-valent iron nanoparticles. Jundishapur Journal of Microbiology, 7(5): e10054. Cao J., Feng Y., Lin X., Wang J., 2016. Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Frontiers

. Water Res. 45(6), 2261-2269. DOI: 10.1016/j.watres.2011.01.022. 15. Zúñiga-Benítez, H., Soltan, J. & Peñuela, G. (2014). Ultrasonic degradation of 1-H-benzotriazole in water. Water Sci. Technol. 70(1), 152-159. DOI: 10.2166/wst.2014.210. 16. Bahnmüller, S., et al. (2015). Degradation rates of benzotriazoles and benzothiazoles under UV-C irradiation and the advanced oxidation process UV/H 2 O 2. Water Res. 74, 143-154. DOI: 10.1016/j.watres.2014.12.039. 17. Crane, R. & Scott, T. (2012). Nanoscale zero-valent iron: future prospects for an emerging water treatment