Search Results

1 - 10 of 1,171 items :

Clear All

. Gamelin FX, Berthoin S, Bosquet L. Validity of the Polar S810 heart rate monitor to measure R-R intervals at rest. Med Sci Sports Exerc 2006;38:887-93. 16. Giles D, Draper N, Neil W. Validity of the Polar V800 heart rate monitor to measure RR intervals at rest. Eur J Appl Physiol 2016;116:563-71. 17. Hernando D, Garatachea N, Almeida R, et al. Validation of heart rate monitor Polar RS800 for heart rate variability analysis during exercise. J Strength Cond Res 2016; doi: 10.1519/JSC.0000000000001662. 18. Hong S, Yang Y, Kim S, et al. Performance study of the wearable one

References [1] Tang, S.L.P.T. (2007). Recent developments in flexible wearable electronics for monitoring applications. Transactions of the Institute of Measurement and Control, 29, 283-300. [2] Vassiliadis, S. (1996). Automation and the Textile Industry. Beigl, M., Intille, S., Rekimoto, J., Toknda, H. (Eds.). Educational Institution of Piraeus & Guimaraes Universidade do Minho, (Greece). [3] Schwarz, A., Van Langenhove, L., Guermonprez, P., Deguillemont, D. (2010). A roadmap on smart textiles. Textile Progress, 42(2), 99-180. [4] Dhawan, A., Seyam, A.M., Ghosh

simulation: A systematic review. The Surgeon 2017; 15(6): 355-65. 5. Georgiou K, Larentzakis AV, Khamis N, et al. Can wearable devices accurately measure heart rate variability? A systematic review. Folia Medica 2018; 60(1): 95-107. 6. Tarvainen MP, Niskanen JP, Lipponen JA, et al. Kubios HRV--heart rate variability analysis software. Comput Methods Programs Biomed 2014; 113(1): 210-20. 7. Peng RC, Zhou XL, Lin WH, et al. Extraction of heart rate variability from smartphone photoplethysmograms. Computational and Mathematical Methods in Medicine 2015; 2015:Article ID 516826

review of energy concepts and a proposed nomenclature. Journal of Rehabilitation Research and Development , 39 (1), 1-11. [14] Liu, T., Inoue, Y., Shibata, K. (2009). Development of a wearable sensor system for quantitative gait analysis. Measurement , 42, 978-988. [15] Sardini, E., Serpelloni, M., Lancini, M. (2015). Wireless instrumented crutches for force and movement measurements for gait monitoring. IEEE Transactions on Instrumentation and Measurement , 64 (12), 3369-3379. [16] Torburn, L., Perry, J., Ayyappa, E., Shanfield, S.L. (1990). Below-knee amputee gain

References [1] Bunn, J.A., Navalta, J.W, Fountaine, C.J., Reece, J.D. (2018). Current state of commercial wearable technology in physical activity monitoring 2015-2017. International Journal of Exercise Science, 11 (7), 503-515. [2] Liu, Y., Wang, H., Zhao, W., Zhang, M., Qin, H., Xie, Y. (2018). Flexible, stretchable sensors for wearable health monitoring: Sensing mechanisms, materials, fabrication strategies and features. Sensors (Basel), 18 (2), 645. [3] Kumar, A., Komaragiri, R., Kumar, M. (2018). From pacemaker to wearable: Techniques for ECG detection

References [1] Huang T., Li T., Xin S., et al.: Mechanical and tribological properties of hybrid fabric-modified polyetherimide composites, Wear, Vol.306(1-2), pp. 64-72, 2013. [2] Sharma M, Bijwe J., Mitschang P.: Wear performance of PEEK-carbon fabric composites with strengthened fiber-matrix interface, Wear, Vol. 271(9-10), pp. 2261-2268, 2011. [3] Ren G., Zhang Z., Zhu X., et al.: Influence of functional graphene as filler on the tribological behaviors of Nomex fabric/phenolic composite, Composites: Part A, Vol. 49, pp. 157-164, 2013. [4] Bijwe J., Rattan R

. Rudzitis, J., et al. (2005). 3D Roughness Effects on Tribology of Sliding Surfaces. In: Proceedings of the 10th International Conference on Metrology and Properties of Engineering Surfaces, 345-348. Saint Etienne (France): Publication de l’Université de Saint-Etienne. 6. Students E. (1996). Wear Calculation of Sliding Friction Surfaces. Riga: Riga Technical University.

References [1] R. Kumar, S. Kumar, B. Prakash, A. Sethuramiah, Assessment of engine liner wear from bearing area curves, Wear, 2000, 282-286. [2] A.V. Sreenath, N. Raman, Running-in wear of compression ignition engine: factors influencing the conformance between cylinder liner and piston ring, Wear 38 , 1976, 271-289. [3] P. Pawlus, A study on the functional properties of honed cylinders surface during running-in, Wear, 1994, 247-254. [4] M. Zheng, A.H. Naeim, B. Walter, G. John, Break-in liner wear and piston ring assembly friction in a spark-ignited engine

References [1] Yang, A.Y., Jafari, R., Sastry, S.S., Bajcsy, R. (2009). Distributed recognition of human actions using wearable motion sensor networks. Journal of Ambient Intelligence and Smart Environments, 1 (2), 103-115. [2] Yang, A., Kuryloski, P., Bajcsy, R. (2009). WARD: A wearable action recognition database. In 27th Annual CHI Conference, 4-9 April 2009, Boston, MA. [3] Lara, O.D., Labrador, M.A. (2013). A survey on human activity recognition using wearable sensors. Communications Surveys & Tutorials, 15 (3), 1192-1209. [4] Preece, S.J., Goulermas, J

, S. A. EL-BADRY, A. M. SANAD, B. KIEBACK, Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders, Wear 253 (2002) 699-710 Y. Z. ZHAN, G. ZHANG, Friction and wear behavior of copper matrix composites reinforced with SiC and graphite particles, Tribology Lett. 17 (2004) 91-98 KOVÁČIK, J.; et al., Effect of composition on friction coefficient of Cu-graphite composites, Wear 265, 2008, 411-416 MCLACHLAN, D. S.; BLASZKIEWICZ M.; NEWNHAM, R. E., J. Am. Ceram. Soc. 73, 1990, 2187 MCLACHLAN D. S. et al., J. Phys.: Condens. Matter