Search Results

1 - 10 of 44 items :

  • "thermochronology" x
Clear All
Low temperature thermochronology using thermoluminescence signals from K-feldspar

potentials of luminescence thermochronology, it has not been widely applied because suitable dating protocols that can be routinely and conveniently applied in the laboratory are unavailable. Guralnik et al . (2015) studied the OSL signals from quartz samples and found undesirable OSL characteristics for dating the rocks. King et al . (2016) studied the infra-red stimulated luminescence (IRSL) signals from K-feldspar through the multi-elevated-temperature (MET) protocol ( Li and Li, 2011 ), and indicated the great potential of it. Tang and Li (2015) suggested that

Open access
Rapid denudation of Higher Himalaya during late Pliestocence, evidence from OSL thermochronology

processes and the interpretation of thermochronometer data, in Low-Temperature Thermochronology: Techniques, Interpretations, and Applications. In: Reiners PW and Ehlers TA, eds., Low-Temperature Thermochronology: Techniques, Interpretations, Applications. Reviews in Mineralogy and Geochemistry 58: 315–350, DOI 10.2138/rmg.2005.58.12. [6] Ehlers TA, Chaudhri T, Kumar S, Fuller CW, Willett SD, Ketcham RA, Bradon MT, Belton DX, Kohn BP, Gleadow AJW, Dunai TJ and Fu FQ, 2005. Computational tools for low-temperature thermochronometer interpretations

Open access
Thermal evolution of the Malá Fatra Mountains (Central Western Carpathians): insights from zircon and apatite fission track thermochronology

Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, NW Washington State. GSA Bull. 110, 985-1009. Burchart J. 1972: Fission-track age determination of accessory apatite from the Tatra mountains, Poland. Earth Planet. Sci. Lett. 15, 418-422. Burtner R. L., Nigrini A. & Donelick R. A. 1994: Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull. 78, 10, 1613-1636. Carlson W. D., Donelick R. A. & Ketcham R. A. 1999

Open access
Thermal history of the Podhale Basin in the internal Western Carpathians from the perspective of apatite fission track analyses

-138. Birkenmajer K. & Pécskay Z. 1999: K-Ar dating of the Miocene andesite intrusions, Pieniny Mts, West Carpathians, Poland. Bull. Pol. Acad. Sci. Earth Sci. 47, 155-169. Birkenmajer K. & Pécskay Z. 2000: K-Ar dating of the Miocene andesite intrusions, Pieniny Mts, West Carpathians: a supplement. Stud. Geol. Pol. 117, 7-25. Botor D., Dunkl I., Rauch-Włodarska M. & von Eynatten H. 2006: Attempt to dating of accretion in the West Carpathian Flysch Belt: apatite fission track thermochronology of tuff layers. Proc. of VI Internat. Conference

Open access
The thermal history of the Miocene Ibar Basin (Southern Serbia): new constraints from apatite and zircon fission track and vitrinite reflectance data

-93. Brandon M.T. 2002: Decomposition of mixed grain age distributions using BinomFit. On Track 24, 13-18. Brković T., Malešević M., Urošević M., Trifunović S. & Radanović Z. 1976: Basic Geological Map of the SFRY, 1:100,000, Sheet Ivanjica (K34-17). Federal Geol. Ins. of Yugoslavia, Belgrade (in Serbian). Burtner R.L., Nigrini A. & Donelick R.A. 1994: Thermochronology of Lower Cretaceous source rocks in the Idaho-Wyoming thrust belt. AAPG Bull. 78, 1613-1636. Cvetković V. 2002: Nature and origin of pyroclastic deposits of the

Open access
Thermal history of the Maramureş area (Northern Romania) constrained by zircon fission track analysis: Cretaceous metamorphism and Late Cretaceous to Paleocene exhumation

.P.T. 2008: Tertiary cooling and exhumation history in the Maramures area (internal Eastern Carpathians, Northern Romania): thermochronology and structural data. In: Siegesmund S., Froitzheim N. & Fügenschuh B. (Eds.): Tectonic aspects of the Alpine-Dinaride-Carpathian System. Geol. Soc. London, Spec. Publ. 298, 169-195. Haas J. & Péró S. 2004: Mesozoic evolution of the Tisza Mega-unit. Int. J. Earth Sci. 93, 297-313. Hames W.E. & Bowring S.A. 1994: An empirical evaluation of the argon diffusion geometry in muscovite. Earth Planet. Sci. Lett

Open access
Low-Blank Crucible for Argon Extraction from Minerals at Temperatures up to 1550°C

References Halas S, 2006. A double-vacuum crucible for temperatures up to 1600°C. Journal of Thermal Analysis and Calorimetry 86: 31-33. McDougall I and Harrison TM, 1988. Geochronology and Thermochronology by the 40 Ar/ 39 Ar Method. Oxford University Press, New York: 212 pp. Staudacher Th, Jessberger EK, Dorflinger D and Kiko J, 1978. A refined ultra-high vacuum furnace for rare gas analysis. Journal of Physics E: Scientific Instruments 11: 781-784.

Open access
Origin of sediments during Cretaceous continent—continent collision in the Romanian Southern Carpathians: preliminary constraints from 40Ar/39Ar single-grain dating of detrital white mica

evolution of the southwestern South Carpathians: evidence from fission-track thermochronology. Tectonophysics 297, 229-249. Bojar A.-V., Bojar H.-P., Ottner F. & Grigorescu D. 2010: Heavy mineral distributions of Maastrichtian deposits from the Haţeg basin, South Carpathians: tectonic and palaeogeographic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol. 293, 319-328. Burchfiel B.C. 1976: Geology of Romania. Geol. Soc. Amer., Spec. Publ. 158, 1-82. Burchfiel B.C. 1980: Eastern European Alpine system and the Carpathian

Open access
Tectonic control on the sedimentary record of the central Moldavidian Basin (Eastern Carpathians, Romania)

-Carpathian Region. In: Golonka J. & Picha F.J. (Eds.): The Carpathians and their foreland: geology and hydrocarbon resources. A.A.P.G. Mem. 84, 11-46. Grasu C., Catană C. & Grinea D. 1988: Carpathian flysch. Petrography and economic considerations. Editura Tehnică, 1-208 (in Romanian). Gröger H.R., Fügenschuh B., Tischler M., Schmid S.M. & Foeken J.P.T. 2008: Tertiary cooling and exhumation history in the Maramureş area (internal Eastern Carpathians, Northern Romania): thermochronology and structural data. Geol. Soc. London, Spec. Publ. 298

Open access
LA-ICP-MS U-Pb dating and REE patterns of apatite from the Tatra Mountains, Poland as a monitor of the regional tectonomagmatic activity

) thermochronology and mechanisms of Pb loss in apatite. Geochimica et Cosmochimica Acta 127: 39–56, DOI 10.1016/j.gca.2013.11.028. http://dx.doi.org/10.1016/j.gca.2013.11.028 [14] Dempster TJ, Jolivet M, Tubrett MN and Braithwaite CJR, 2003. Magmatic zoning in apatite: a monitor of porosity and permeability change in granites. Contribution to Mineralogy and Petrology 145: 568–577, DOI 10.1007/s00410-003-0471-0. http://dx.doi.org/10.1007/s00410-003-0471-0 [15] Gawęda A, 2008. Apatite-rich enclave in the High Tatra granite

Open access