Search Results

1 - 2 of 2 items :

  • "tensor product of B-spline" x
Clear All

Abstract

Spatial environmental heterogeneity are well known characteristics of field forest genetic trials, even in small experiments (<1ha) established under seemingly uniform conditions and intensive site management. In such trials, it is commonly assumed that any simple type of experimental field design based on randomization theory, as a completely randomized design (CRD), should account for any of the minor site variability. However, most published results indicate that in these types of trials harbor a large component of the spatial variation which commonly resides in the error term. Here we applied a two-dimensional smoothed surface in an individual-tree mixed model, using tensor product of linear, quadratic and cubic B-spline bases with different and equal number of knots for rows and columns, to account for the environmental spatial variability in two relatively small (i.e., 576 m2 and 5,705 m2) forest genetic trials, with large multiple-tree contiguous plot configurations. In general, models accounting for site variability with a two-dimensional surface displayed a lower value of the deviance information criterion than the classical RCD. Linear B-spline bases may yield a reasonable description of the environmental variability, when a relatively small amount of information available. The mixed models fitting a smoothed surface resulted in a reduction in the posterior means of the error variance (σ2 e), an increase in the posterior means of the additive genetic variance (σ2 a) and heritability (h 2 HT), and an increase of 16.05% and 46.03% (for parents) or 11.86% and 44.68% (for offspring) in the accuracy of breeding values, respectively in the two experiments.

Abstract

Non-spatial and spatial analyses were carried out to study the effects on genetic parameters in ten-year height growth data across two series of 10 large second-generation full-sib progeny trials of western hemlock [Tsuga heterophylla (Raf.) Sarg.] in British Columbia. To account for different and complex patterns of environmental heterogeneity, spatial single trial analyses were conducted using an individual-tree mixed model with a two-dimensional smoothing surface with tensor product of B-spline bases. The spatial single trial analysis, in all cases, showed sizeable lower Deviance Information Criterion values relative to the non-spatial analysis. Also, fitting a surface displayed a consistent reduction in the posterior mean as well as a decrease in the standard deviations of error variance, no appreciable changes in the additive variance, an increase of individual narrow-sense heritability, and accuracy of breeding values. The tensor product of cubic basis functions of B-spline based on a mixed model framework does provide a useful new alternative to model different and complex patterns of spatial variability within sites in forest genetic trials. Individual narrow-sense heritabilities estimates from the spatial single trial analyses were low (average of 0.06), but typical of this species. Estimated dominance relative to additive variances were unstable across sites (from 0.00 to 1.59). The implications of these estimations will be discussed with respect to the western hemlock genetic improvement program in British Columbia.