Search Results

1 - 10 of 4,862 items :

  • "solvability" x
Clear All

Abstract

This essay’s content is rendered by the titles of the successive sections. 1. Effective solvability versus intuitive solvability. — 2. Decidability, i.e. effective solvability, in predicate logic. The speedup phenomenon — 3. Contributions of the second-order logic to the problems of solvability — 4. The infinite progress of science in the light of Turing’s idea of the oracle. The term “oracle” is a technical counterpart of the notion of mathematical intuition.

A more detailed summary can be obtained through juxtaposing the textboxes labelled with letters A...F. Conclusion: in the progress of science an essential role is played by the feedback between intellectual intuitions (intuitive solvability) and algorithmic procedures (effective solvability).

conversionand solution of sparse systems of low-degree multivariate polynomials over GF (2) viaSAT-solvers , http://eprint.iacr.org/2007/024. [14] BARD, G. V.-COURTOIS, N. T.: Algebraic cryptanalysis of the data encryption standard , in: Cryptography and Coding, 11th IMA Internat. Conference (S. Galbraith, (ed.), Lecture Notes in Comput. Sci., Vol. 4887, Springer-Verlag, Berlin, 2007, pp. 152-169, http://eprint.iacr.org/2006/402. [15] DANTSIN, E.-GOERDT, A.-HIRSCH, E. A.-KANNAN, R.- KLEINBERG, J.- -PAPADIMITRIOU, C. H.-RAGHAVAN, P.-SCH¨ONING, U.: A deterministic (2 − 2

, Czech Republic: Professional Publishing. [5] Pelikán, J. (2001). Discrete models in operational research. Brno, Czech Republic: Professional Publishing. [6] Fylstra, D., Lasdon, L., Watson, J. & Waren, A. (1998). Design and use of the Microsoft Excel Solver. Interfaces. 28(5), 29-55. DOI: 10.1287/inte.28.5.29. [7] Walsh, S. & Diamond, D. (1995). Non-linear curve fitting using Microsoft Excel Solver. Talanta. 42(4), 561-572. DOI: 10.1016/0039-9140(95)01446-i. [8] Anbuudayasankar, S. P., Ganesh, K. & Mohapatra, S. (2016). Models for practical routing problems in

] Cooper, Fred, and Avinash Khare, and Uday Sukhatme. “Supersymmetry in Quantum Mechanics.” Phys. Rep. 251, no. 5-6 (1995): 267–385. Cited on 109. [6] Reid, William T. “Ricatti Differential Equations.” New York, London: Academic Press, 1972. Cited on 109. [7] Rajchel, Kazimierz. “New solvable potentials with bound state spectrum.” Acta Physica Polonica B. (submitted). Cited on 110.

. [18] A. Najafi, Peseudo-commutators in BCK algebras , Pure Mathematical Science, 2(1) (2013), 29-32. [19] A. Najafi, A. B. Saeid, Solvable BCK algebras , Cankaya University Journal of Science and Engineering, 11(2) (2014), 19-28. [20] A. Najafi, A. Borumand Saeid, E. Elami, Commutators in BCI algebras , Journal of Intelligent and Fuzzy Systems, 31 (2016), 357-366. [21] X. Pin, The study of nilpotent element in BCI-algebras , Journal of Shaanxi University of Technology, 30 (2003), 112-123. [22] D. J. S. Robinson, A Course in the theory of groups , Springer

Oliveira, D. Déharbe, P. Fontaine, veriT: An open, trustable and efficient SMT-solver, Proc. of CADE-22 (2009), vol. 5663 of LNCS , Springer, pp. 151–156. ⇒9, 14 [8] M. Bromberger, C. Weidenbach, Fast cube tests for LIA constraint solving. Proc. of IJCAR’16 (2016), Springer, pp. 116–132. ⇒15 [9] C. W. Brown, M. Košta, Constructing a single cell in cylindrical algebraic decomposition, Journal of Symbolic Computation 70 (2015) 14–48. ⇒17 [10] B. Buchberger, Gröbner bases: Applications. in: The Concise Handbook of Algebra . Kluwer Academic Publishers, 2002, pp. 265

REFERENCES [1] BERMAN, P.—KARPINSKI, M.—SCOTT, A. D.: Computational complexity of some restricted instances of 3-SAT , Discrete Appl. Math. 155 (2007), 649–653. [2] DING, J.—YANG, B.-Y.: Multivariate public key cryptography , in: Post-Quantum Cryptography (D. J. Bernstein et al., eds.), Springer-Verlag, Berlin, 2009, pp. 193–241. [3] RADDUM, H.—SEMAEV, I.: Solving multiple right hand sides linear equations , Des. Codes Cryptogr. 49 (2008), 147–160. [4] REPKA, M.—ZAJAC, P.: Overview of the Mceliece cryptosystem and its security , Tatra Mt. Math. Publ. 60

References Bonwell, C. C. & Eison, J. A. (1991). Active Learning: Creating Excitement in the Classroom. Washington, DC: The George Washington University (ERIC Clearinghouse on Higher Education). Cavalluci, D. & Eltzer, T. (2011) Structuring knowledge in inventive design of complex problems. Procedia Engineering , 9: 694-701, DOI: 10.1016/j.proeng.2011.03.157 Chickering, A. W. & Gamson, Z. F. (1987). Seven Principles for Good Practice. AAHE Bulletin, 39: 3-7. Chen, X. L. & Ding, F. (2010). Meta-Synthesis Approach to Model Complex Problem Solving, International

–159, Lawrence Erlbaum Associates, 1985. ⇒147, 148 [8] M. Gorges-Schleuter, Genetic algorithms and population structure - A massively parallel algorithm , Ph.D. thesis, University of Dortmund, 1990. ⇒148 [9] M. M. Güntzer, D. Jungnickel and M. Leclerc, E cient algorithms for the clearing of interbank payments, European Journal of Operational Research 106 , 1 (1998) 212–219. ⇒143 [10] J. H. Holland, Adaptation in Natural and Artificial Systems , The University of Michigan Press, 1975. ⇒149 [11] G. J. Krishna and V. Ravi, Evolutionary computing applied to solve some

computational Problems and their solvers, International Journal of Computer Science Issues, 15, 3, 2018, 1-7. [11] Gogodze J., Using a Two-Person Zero-Sum Game to Solve a Decision-Making Problem, Pure and Applied Mathematics Journal, 7, 2, 2018, 11-19. [12] Mallipeddi, R., Suganthan, P. N., Pan, Q. K., Tasgetiren, M. F., Differential evolution algorithm with ensemble of parameters and mutation strategies, Applied Soft Computing, 11, 2, 2011, 1679-1696. [13] Mittelmann, H., Benchmarking interior point LP/QP solvers, Optim. Methods Softw., 12, 1999, 655–670. [14] Nash, S