Search Results

1 - 10 of 1,087 items :

Clear All

Compensation and Load Balancing in Three-Phase, Four-Wire Electric Distribution Systems Supplying Non-Linear Loads, Electric Power Systems Research 44 (1998), 93-100. UCAR, M.—OZDEMIR, E.: Control of a 3-Phase 4-Leg Active Power Filter under Non-Ideal Mains Voltage Condition, Electric Power Systems Research (2007). UTKIN, V. A.: Variable Structure Systems with Sliding Mode, IEEE Transaction on Automatic Conbtrol AC22 No. 2 (1997), 1105-1120. SPIAZZI, G.—MATTAVELLI, P.—ROSSETTO, L.—ALESANI, L.: Application of Sliding Mode Control to Switch-Mode Power Supplies, Journal of

References Bartolini, G., Ferrara, A. and Usai, E. (1998). Chattering avoidance by second order sliding mode control, IEEE Transactions on Automatic Control 43 (2): 241–246. Bartolini, G., Ferrara, A., Usai, E. and Utkin, V. I. (2000). On multi-input chattering-free second-order sliding mode control, IEEE Transactions on Automatic Control 45 (5): 1711–1717. Bartoszewicz, A. (1996). Remarks on ‘Discrete-time variable structure control systems’, IEEE Transactions on Industrial Electronics 43 (1): 235–238. Bartoszewicz, A. (1998). Discrete-time quasi-sliding mode

References Ackermann, J. and Utkin, V. I. (1998). Sliding mode control design based on Ackermann's formula, IEEE Transactions on Automatic Control   43 (2): 234-237. Boyd, S., Ghaoui, L. E., Feron, E. and Balakrishnan, V. (1994). Linear Matrix Inequalities in System and Control Theory , Society for Industrial and Applied Mathematics, Philadelphia, PA. Cao, W. J. and Xu, J. X. (2004). Nonlinear integral-type sliding surface for both matched and unmatched uncertain systems, IEEE Transactions on Automatic Control   49 (8): 1355-1360. Choi, H. H. (2001). Variable

REFERENCES 1. Maeno, N., Arakawa, M., Yasutome, A., Mizukami, N., & Kanazawa, S. (2003). Ice-ice friction measurements, and water lubrication and adhesion-shear mechanisms. Can. J. Phys., 81 , 241–249. doi:10.1139/P03-023. 2. Maeno, N., & Arakawa, M. (2004). Adhesion shear theory of ice friction at low sliding velocities, combined with ice sintering. J. Appl. Phys., 95 , 134–139. doi:10.1063/1.1633654. 3. Ling, E.J.Y., Uong, V., Renault-Crispo, J.S., Kietzig, A.M., & Servio, P. (2016). Reducing ice adhesion on nonsmooth metallic surfaces: Wettability and

REFERENCES 1. Baurle, L., Kaempfer, T.U., Szabo, D., & Spencer, N.D. (2007). Sliding friction of polyethylene on snow and ice: Contact area and modeling. Cold Reg. Sci. Technol., 47 , 276–289. doi:10.1016/j.coldregions.2006.10.005 2. Spagni, A., Berardo, A., Marchetto, D., Gualtieri, E., Pugno, N.M., & Valeri, S. (2016). Friction of rough surfaces on ice: Experiments and modeling. Wear , 368–369, 258–266. doi:10.1016/j.wear.2016.10.001 3. Ducret, S., Zahouani, H., Midol, A., Lanteri, P., & Mathia, T.G. (2005). Friction and abrasive wear of UHWMPE sliding on ice

References [1] FU J., WANG L., DU Y., ZHANG J., A robust sliding mode control for nonlinear system with adjustable chattering phenomenon, Variable Structures Systems (VSS), 14th International Workshop, IEEE, 2016, 34-38. [2] BARTOSZEWICZ A., Non-switching reaching law for sliding mode control of discrete time systems, System Theory, Control and Computing (ICSTCC), 17th International Conference, IEEE, 2013, 60-65. [3] LEI Q., WEIDONG Z., Double-loop chattering-free adaptive integral sliding mode control for underwater vehicles, OCEANS 2016, IEEE, Shanghai 2016, 1

. Utkin, “Variable structure system with sliding mode”, IEEE Trans. Automatic Contr. , vol. 22, no.2, pp. 212-221, 1997. [15] W. Perruquetti and J. P. Barbot, Sliding mode control Engineering, Automation and Control Series , Marcel Dekker Inc., New York (USA), 2002. [16] B. Bandyopadhyay, F. Deepak and K.-S. Kim, SlidingMode Control Using Novel Sliding Surfaces, B.Media , Ed. Springer Science, 2009. [17] O. Camacho and R. Rojas, “A general slidingmode controller for nonlinear chemical processes”, J. Dyn. Syst. Meas. Control , vol. 122, pp. 650 - 655, 2000. [18] O

References 1. Bandyopadhyay, B., S. Janardhanan. Discrete-Time Sliding Mode Control: A Multirate Output Feedback Approach. - Berlin, Heidelberg, Springer-Verlag, 2006. 2. Bartoszewicz, A. Nonlinear Flow Control Strategies for Connection-Oriented Communication Networks. - In: IEE Proceedings on Control Theory and Applications, Vol. 153, 2006, 21-28. 3. Bartoszewicz, A., J. Żuk. Discrete Time Sliding Mode Flow Controller for Multi-Source Single-Bottleneck Connection-Oriented Communication Networks. - Journal of Vibration and Control, Vol. 15, 2009, No 11, 1745

R eferences [1] A. Kojima, S. Ishijima, K. Uchida and E. Shimemura, “Robust Stabilization of a System with Delays Control”, IEEE Transactions on Automation Control , vol. 39, no. 8, pp. 1694–1698, 1994, doi: 10.1109/9.310054. [2] C. H. Chou and C. C. Cheng, “Design of Adaptive Variable Structure Controllers for Perturbed Time-Varying State Delay Systems”, Journal of Franklin Institute , vol. 338, no. 1, pp. 35–46, 2001, doi: 10.1016/S0016-0032(00)00070-3. [3] J. J. Slotine, and S. S. Sastry, “Tracking Control of Non-Linear Systems using Sliding Surfaces with

References Alwi, H. and Edwards, C. (2008a). Fault tolerant control using sliding modes with on-line control allocation, Automatica 44(7): 1859-1866. Alwi, H. and Edwards, C. (2008b). Fault tolerant sliding mode control design with piloted simulator evaluation, Journal of Guidance, Control, and Dynamics 31(5): 1186-1201. Alwi, H., Edwards, C. and Tan, C. (2011). Fault Detection and Fault Tolerant Control Using Sliding Modes, Advances in Industrial Control, Springer-Verlag, London. Bošković, J. and Mehra, R. (2002). Control allocation in overactuated aircraft