Search Results

1 - 10 of 986 items :

Clear All

References Dodig, M. and Stosic, M. (2009). Singular systems state feedbacks problems, Linear Algebra and Its Applications 431 (8): 1267-1292. Dai, L. (1989). Singular Control Systems , Springer-Verlag, Berlin. Fahmy, M.H and O'Reill J. (1989). Matrix pencil of closed-loop descriptor systems: Infinite-eigenvalues assignment, International Journal of Control , 49( 4): 1421-1431. Gantmacher, F.R. (1960). The Theory of Matrices , Chelsea Publishing Co., New York, NY. Kaczorek, T. (1992). Linear Control Systems , Vol. 1, Research Studies Press, John Wiley, New

References [1] D. C. Chang, J. F. Li, and J. Xiao, Weighted scale estimates for Calderón-Zygmund type operators, Contemporary Mathematics, 446 (2007), 61-70. [2] W. G. Chen, Besov estimates for a class of multilinear singular integrals, Acta Math. Sinica, 16 (2000), 613-626. [3] R. R. Coifman, R. Rochberg, and G. Weiss, Fractorization theorems for Hardy spaces in several variables, Ann. of Math., 103(1976), 611-635. [4] J. Garcia-Cuerva and J. L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Math. 116, Amsterdam, 1985. [5] S. Guo

References 1. Benvenuti L., Farina L. (2004), A tutorial on the positive realization problem, IEEE Trans. Autom. Control., Vol. 49, No. 5, 651-664. 2. Dail L. (1989), Singular control systems, Lectures Notes in Control and Information Sciences, Springer-Verlag, Berlin. 3. Dodig M. Stosic M. (2009), Singular systems state feedbacks problems, Linear Algebra and its Applications, Vol. 431, No. 8, 1267-1292. 4. Fahmy M.H, O’Reill J. (1989), Matrix pencil of closed-loop descriptor systems: infinite-eigenvalues assignment, Int. J. Control., Vol. 49, No. 4, 1421-1431. 5

References [1] A. Ashtekar. Non-perturbative canonical gravity, Lecture notes in collab- oration with R. S. Tate. World Scientific, Singapore, 1991. [2] A. Ashtckar. Singularity Resolution in Loop Quantum Cosmology: A Brief Overview. J. Phys. Conf. Ser., 189:012003, 2009. [3] A. Ashtekar and E. Wilson-Ewing. Loop quantum cosmology of Bianchi ’ I models. Phys. Rev.. D79:083535, 2009. [4] A. Bejancu and K.L. Duggal. Lightlike submanifolds of Semi-Ricmannian manifolds. Acta Appi. Math., 38(2):197-215, 1995. [5] R .H. Boyer and R.W. Lindquist. Maximal analytic

References Bałchanowski J. (2014a): Modelling and simulation researches of translational parallel mechanism with the joints clearance taking into account (in Polish). - Modelling in Engineering”, no 50 (tom 19), pp.5-12. Bałchanowski J. (2014b): Topology and analysis of the singularities of a parallel mechanism with three degrees of freedom. - Archives of Civil and Mechanical Engineering, vol.14, No.1, pp.80-87. Bałchanowski J. (2000): Selected problems of parallel manipulator computer simulation. - In: VIII International Congress on the Theory of Machines and

Centrum, Amsterdam, 1981). [5] Y. Caro and Zs. Tuza, Singular Ramsey and Turán numbers , Theory Appl. Graphs 6 (2019) 1–32. [6] P. Erdős, Extremal problems in graph theory , in: Theory of Graphs and its Applications, Proc. Sympos. Smolenice, 1963 (1964) 29–36. [7] P. Erdős and T. Gallai, On maximal paths and circuits of graphs , Acta Math. Hungar. 10 (1959) 337–356. doi:10.1007/BF02024498 [8] P. Erdős and M. Simonovits, A limit theorem in graph theory , Studia Sci. Math. Hungar. 1 (1966) 51–57. [9] Z. Füredi and M. Simonovits, The history of degenerate

Research 74(1): 56–80. Fontaine, Matthieu. 2019. Singular terms, identity, and the creation of fictional characters. Disputatio 11(54): 207–29. Friend, Stacie. 2007. Fictional characters. Philosophy Compass 2: 141–56. Friend, Stacie. 2011. The great beetle debate: a study in imagining with names. Philosophical Studies 153: 183–211. Friend, Stacie. 2012. Fiction as a genre. Proceedings of the Aristotelian Society 112(2): 179–209. Friend, Stacie. 2014. Notions of nothing. In Empty Representations. Reference and Non-Existence , ed. by Manuel García-Carpintero and

1 Introduction Recently many approximate techniques [ 1 , 2 , 3 , 4 , 5 , 6 ] have been developed for handling complicated physical problems. One of such complications arises for solving the singular initial value problems. The study of this topic has concerned the interest of many mathematicians and physicists. A first order singular initial value problem is encountered in ecology in the computation of avalanche run-up [ 7 ]. Several authors evaluated the singular initial value problems by both analytical and numerical techniques. Koch and Weinmuller [ 8

). The approximation of one matrix by an-other of lower rank. Psychometrika , 1 , 211‒218. Fisher R.A. (1940). The precision of discriminant functions. Annals of Eugenics , 10 , 422‒429. Gabriel, K.R. (1978). Least-squares approximation of matrices by additive and multiplicative models. J. R. Statist. Soc. B , 40 , 186‒196. Good, I.J. (1969). Some applications of the singular decomposition of a matrix. Technometrics , 11 , 823‒831. Green, P.E., Carroll, J.D. (1976). Mathematical tools for applied multivariate analysis . New York: Academic Press. Greenacre, M

Bibliography [1] C. Agostinelli, Integrazione dell’equazione differenziale u xx + u yy + u zz + x −1 u x = f e problema analogo a quello di Dirichlet per un campo emisferico, Atti della Accademia Nazionale dei Lincei 6(26) (1937), 7-8 (In Italian). [2] A. Altin, Solutions of type r m for a class of singular equations, Intern. Jour. of Math. Sc. 5(3) (1982), 613-619. [3] L. Bers, Mathematical Aspects of Subsonic and Transonic Gas Dynamics, New York, London, 1958. [4] A. V. Bitsadze, Some Classes of Partial Differential Equations, Nauka, Moscow, 1981 (In