Search Results

1 - 10 of 3,522 items :

Clear All

References 1. A l-Saidi, N., G. Rushdan, M. S d. Using IFS as an Encryption Method. - In: ICET’2009, 275-278. 2. Behnia, S., A. Akshani, H. Mahmodi, A. Akhava n. A Novel Algorithm for Image Encryption Based on Mixture of Chaotic Maps. - Chaos Solitons and Fractals, Vol. 35, 2008, No 2, 408-419. 3. Celika, M. U., G. Sharma, A. M. Tekalp. Gray-Level-Embedded Lossless Image Compression. - Signal Processing: Image Communication, Vol. 18, 2003, No 6, 443-454. 4. Chen, G., Y. Mao, C. K. Chui. A Symmetric Image Encryption Scheme Based on 3D Chaotic Cat Maps. Chaos

Cryptology Conference, Santa Barbara, CA, USA, 2008, Lecture Notes in Comput. Sci., Vol. 5157, Springer, Berlin, 2008, pp. 108-125. [BM99a] BELLARE, M.-MINER, S. K.: A forward-secure digital signature scheme, in: Advances in Cryptology-CRYPTO ’99, Lecture Notes in Comput. Sci., Vol. 1666, Springer, Berlin, 1999, pp. 431-448. [BM99b] BELLARE, M.-MINER, S. K.: A forward-secure digital signature scheme,, July, 1999, Full version of [BM99a]. [BPS07] BACKES, M.-PFITZMANN, B.-SCEDROV, A.: Key-dependent message security under active

REFERENCES [1] ALVAREZ, L.—GUICHARD, F.—LIONS, P.-L.—MOREL, J.-M.: Axioms and fundamental equations of image processing , Arch. Rational Mech. Anal. 123 (1993), 199–257. [2] BARLES, G.—SOUGANIDIS, P. E.: Convergence of approximation schemes for fully nonlinear second order equations ,Asymptotic Anal. 4 (1991), 271–283. [3] CARLINI, E.—FERRETTI, R.: A Semi-Lagrangian approximation for the AMSS model of image processing , Appl. Numer. Math. 73 , (2013), 16–32. [4] CATTÉ, F.—LIONS, P.-L.—MOREL, J.-M.—COLL, T.: Image selective smoothing and edge detection by

B. Perthame, Derivation of hyperbolic models for chemosensitive movement, J. Math. Biol., vol. 50, pp. 189-207, 2005. 12. T. Hillen, On the L2-moment closure of transport equation: The Cattaneo approximation, DiscreteContin. Dyn. Syst., Ser. B, vol. 4, pp. 961-982, 2004. 13. S. Jin, E_cient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput., vol. 21, no. 2, pp. 441-454, 1999. 14. N. Crouseilles, P. Degond, and M. Lemou, A hybrid kinetic/uid model for solving the gas dynamicsBoltzmann-BGK equation, J. Comput. Phys., vol

Networks, in Proceedings of 2011 International Conference on Communication, Computing & Security, ICCCS '11 , pp. 1-6, doi:10.1145/1947940.1947942. [4] Kumar Dilip, Patel R.B., Aseri Trilok C., Energy Efficient Heterogeneous Clustered scheme for Wireless Sensor Network, Journal of Computer Communications, Elsevier, Vol. 32 (4), pp. 662-667, March 2009. [5] Pal Vipin, Singh Girdhari, Yadav Rajender Prasad, SCHS: Smart Cluster Head Selection Scheme for Clustering Algorithms in Wireless Sensor Networks, Wireless Sensor Network , Vol. 4, pp. 273-280, 2012. [6] Qing Li

iterative method, Gauss-Seidel method, etc. In the past several years, considerable attention has been made for obtaining solutions of nonlinear integral equations. Nonlinearity is one of the interesting topics among the physicists, mathematicians, engineers, etc. Since most physical systems are inherently nonlinear in nature. The full-approximation scheme (FAS) is largely applicable in increasing the efficiency of the iterative methods used to solve nonlinear system of algebraic equations. In the historical three decades the development of effective iterative solvers for

References [1] ANDREIANOV, B.-BOYER,F.-HUBERT, F.: Discrete duality finite volume schemes for Leray-Lions type elliptic problems on general 2D meshes, Numer. Methods Partial Differential Equations 23 (2007), 145-195. [2] ALVAREZ, L.-GUICHARD, F.-LIONS, P. L.-MOREL, J. M.: Axioms and fundamental equations of image processing, Arch. Ration. Mech. Anal. 123 (1993), 200-257. [3] ANGENENT, S. B.-GURTIN, M. E.: Multiphase thermomechanics with an interfacial structure 2. Evolution of an isothermal interface, Arch. Ration. Mech. Anal. 108 (1989), 323-391. [4] CASELLES, V

.Arora, and R.Mahajan, “Cooperative spectrum sensing using hard decision fusion scheme,” International Journal of Engineering Research and General Science Volume 2, Issue 4, 2014. [5] M. Megha, “Accuracy analysis of 5-bit data and decision fusion strategies in cognitive radio networks,” Research Journal of Engineering Sciences, Vol.3, No.10, 2014. [6] G. Padmavathi, and S. Shanmugavel, “Performance analysis of cooperative spectrum sensing technique for low SNR regime over fading channels for cognitive radio networks,” Indian Journal of Science and Technology, Vol. 8, No.16

. Comparative Study of Acceptance and Adaptation to New Complete Dentures, Using Two Construction Protocols. J Prosthodont, 2016;25:536-543. 26. Abduo J. Occlusal Schemes for Complete Dentures: A Systematic Review. Int J Prosthodont, 2013;26:26-33. 27. Carlsson GE. Critical review of some dogmas in prosthodontics. J Prosthodont Res, 2009;53:3-10. 28. Zhao K, Mai QQ, Wang XD, Yang W, Zhao L. Occlusal designs on masticatory ability and patient satisfaction with complete denture: A systematic review. J Dent, 2013;41:1036-1042. 29. Peroz I, Leuenberg A, Haustein I, Lange KP

References Besse N. (2004): Convergence of a semi-Lagrangian scheme for the one-dimensional Vlasov-Poisson system. SIAM Journal on Numerical Analysis , Vol. 42, No. 1, pp. 350-382. Besse N., Filbet F., Gutnic M., Paun I. and Sonnendrücker E. (2001): An adaptive numerical method for the Vlasov equation based on a multiresolution analysis, In: Numerical Mathematics and Advanced Applications ENUMATH 2001 (F. Brezzi, A. Buffa, S. Escorsaro and A. Murli, Eds.). Ischia: Springer, pp. 437-446. Campos Pinto M. (2005): Développement et analyse de schémas adaptatifs